The Probabilistic p-Center problem under Pressure (Min PpCP) is a variant of the usual p-Center problem we recently introduced in the context of wildfire management. The problem is to locate p shelters minimizing the maximum distance people will have to cover to reach the closest accessible shelter in case of fire. The landscape is divided into zones and is modeled as an edge-weighted graph with vertices corresponding to zones and edges corresponding to direct connections between two adjacent zones. The risk associated with fire outbreaks is modeled using a finite set of fire scenarios. Each scenario corresponds to a fire outbreak on a single zone (i.e., on a vertex) with the main consequence of modifying evacuation paths in two ways. First, an evacuation path cannot pass through the vertex on fire. Second, the fact that someone close to the fire may not take rational decisions when selecting a direction to escape is modeled using new kinds of evacuation paths. In this paper, for a given instance of Min PpCP defined by an edge-weighted graph G=(V,E,L) and an integer p, we characterize the set of feasible solutions of Min PpCP. We prove that Min PpCP cannot be approximated with a ratio less than 56/55 on subgrids (subgraphs of grids) of degree at most 3. Then, we propose some approximation results for Min PpCP. These results require approximation results for two variants of the (deterministic) Min p-Center problem called Min MAC p-Center and Min Partial p-Center.
翻译:压力下的概率性p中心问题(Min PpCP)是我们最近在野火管理背景下引入的通常的p中心问题的一种变体。 问题在于定位p掩蔽器, 最大限度地减少人们在火灾时必须覆盖的最大距离才能到达最接近的掩蔽处。 景观分为几个区域, 以边缘加权图制成, 与两个邻近地区之间的直接连接相对应的区域和边缘为模型。 与火灾爆发有关的风险是使用一套有限的火情框来模拟的。 每一种情景都对应着一个区域( 即, 在一个顶点上) 的火灾爆发, 其主要后果是用两种方式修改疏散路径。 首先, 疏散路径无法在火灾发生时通过最接近最接近的掩蔽处。 第二, 接近火灾的人在选择逃跑方向时可能不会做出合理的决定, 使用新型的疏散路径。 在本文中, 由精度中度的最小点点点G=( V, E, L) 定义的 Min- CP 和直观 p p p p p) 主要后果, 我们用最接近的 Prial 比例 要求这些 的 Piver 的 Prial 。