The Hausdorf moment problem (HMP) over the unit interval in an $L^2$-setting is a classical example of an ill-posed inverse problem. Since various applications can be rewritten in terms of the HMP, it has gathered significant attention in the literature. From the point of view of regularization it is of special interest because of the occurrence of a non-compact forward operator with non-closed range. Consequently, HMP constitutes one of few examples of a linear ill-posed problem of type~I in the sense of Nashed. In this paper we highlight this property and its consequences, for example, the existence of a infinite-dimensional subspace of stability. On the other hand, we show conditional stability estimates for the HMP in Sobolev spaces that indicate severe ill-posedness for the full recovery of a function from its moments, because H\"{o}lder-type stability can be excluded. However, the associated recovery %of the linear functional that characterizes of the function value at the rightmost point of the unit interval is stable of H\"{o}lder-type in an $H^1$-setting. We moreover discuss stability estimates for the truncated HMP, where the forward operator becomes compact. Some numerical case studies illustrate the theoretical results and complete the paper.


翻译:以 $L $2$ 设定单位间隔的Hausdorf 时点问题( HMP) 是一个典型的错误问题。 由于各种应用程序都可以用 HMP 重写, 它在文献中引起极大关注。 从正规化的角度来看, 它特别值得注意, 因为出现了一个非契约的前方操作器, 且不封闭范围。 因此, HMP 是纳希德意义上的 ~ I 型线性错误问题的少数例子之一。 在本文中, 我们突出这一属性及其后果, 例如, 存在一个无限的稳定性子空间。 另一方面, 我们展示了Sobolev 空间中 HMP 的有条件稳定性估计, 这表明它从时间上完全恢复功能存在严重错误, 因为 H\ { o}lder 类型稳定可以排除。 但是, 在单位间隔最右端的函数值的线性功能恢复% 。 例如, 我们强调该属性及其后果的无限维维度子空间的存在。 另一方面, 我们展示了在 $H Q $ 1 格式的模型分析结果。

0
下载
关闭预览

相关内容

ICML 2021论文收录
专知会员服务
122+阅读 · 2021年5月8日
专知会员服务
61+阅读 · 2020年3月4日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
一文道尽softmax loss及其变种
极市平台
14+阅读 · 2019年2月19日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年6月4日
Dynamic Principal Subspaces in High Dimensions
Arxiv
0+阅读 · 2021年6月2日
Arxiv
0+阅读 · 2021年6月2日
Arxiv
0+阅读 · 2021年6月1日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关VIP内容
ICML 2021论文收录
专知会员服务
122+阅读 · 2021年5月8日
专知会员服务
61+阅读 · 2020年3月4日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
一文道尽softmax loss及其变种
极市平台
14+阅读 · 2019年2月19日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员