We study fair resource allocation under a connectedness constraint wherein a set of indivisible items are arranged on a \emph{path} and only connected subsets of items may be allocated to the agents. An allocation is deemed fair if it satisfies \emph{equitability up to one good} (EQ1), which requires that agents' utilities are approximately equal. We show that achieving EQ1 in conjunction with well-studied measures of \emph{economic efficiency} (such as Pareto optimality, non-wastefulness, maximum egalitarian or utilitarian welfare) is computationally hard even for \emph{binary} additive valuations. On the algorithmic side, we show that by relaxing the efficiency requirement, a connected EQ1 allocation can be computed in polynomial time for \emph{any} given ordering of agents, even for general monotone valuations. Interestingly, the allocation computed by our algorithm has the highest egalitarian welfare among all allocations consistent with the given ordering. On the other hand, if efficiency is required, then tractability can still be achieved for binary additive valuations with \emph{interval structure}. On our way, we strengthen some of the existing results in the literature for other fairness notions such as envy-freeness up to one good (EF1), and also provide novel results for negatively-valued items or \emph{chores}.
翻译:在连接限制下,我们研究公平资源分配,根据这种限制,可以将一组不可分割的物品安排在 emph{path} 上,并且只有连接的项目子组可以分配给代理商。如果能够满足\emph{equinable to a good} (EQ1) (EQ1),要求代理商的公用事业大致相等(EQ1),要求代理商的公用事业大致相等。我们表明,实现EQ1,同时采用经过仔细研究的 emph{economic 效率的衡量标准 }(例如Pareto最佳性、非浪费性、最高平等性或实用性福利 ) 是在计算上很困难的。在算法方面,即使是对\emph{bin} 添加性估价来说也是很困难的。在算法方面,通过放松效率要求, EQ1 就可以计算出一个连接的 EQ1 分配时间来计算出代理商的公用事业, 即使是一般的单体估价。有趣的是, 我们的算算算所有分配都具有与给定的顺序一致的最平等性。另一方面,如果需要效率,那么,那么,那么, 仍然可以实现可移动性 和性 与我们的现有的 性 性 性 性 性 与正性 性 性 性,作为正性 性 性 性 性 性,作为正性 的正性 性 的正性 。