This paper presents a novel approach to neuromorphic audio processing by integrating the strengths of Spiking Neural Networks (SNNs), Transformers, and high-performance computing (HPC) into the HPCNeuroNet architecture. Utilizing the Intel N-DNS dataset, we demonstrate the system's capability to process diverse human vocal recordings across multiple languages and noise backgrounds. The core of our approach lies in the fusion of the temporal dynamics of SNNs with the attention mechanisms of Transformers, enabling the model to capture intricate audio patterns and relationships. Our architecture, HPCNeuroNet, employs the Short-Time Fourier Transform (STFT) for time-frequency representation, Transformer embeddings for dense vector generation, and SNN encoding/decoding mechanisms for spike train conversions. The system's performance is further enhanced by leveraging the computational capabilities of NVIDIA's GeForce RTX 3060 GPU and Intel's Core i9 12900H CPU. Additionally, we introduce a hardware implementation on the Xilinx VU37P HBM FPGA platform, optimizing for energy efficiency and real-time processing. The proposed accelerator achieves a throughput of 71.11 Giga-Operations Per Second (GOP/s) with a 3.55 W on-chip power consumption at 100 MHz. The comparison results with off-the-shelf devices and recent state-of-the-art implementations illustrate that the proposed accelerator has obvious advantages in terms of energy efficiency and design flexibility. Through design-space exploration, we provide insights into optimizing core capacities for audio tasks. Our findings underscore the transformative potential of integrating SNNs, Transformers, and HPC for neuromorphic audio processing, setting a new benchmark for future research and applications.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Processing 是一门开源编程语言和与之配套的集成开发环境(IDE)的名称。Processing 在电子艺术和视觉设计社区被用来教授编程基础,并运用于大量的新媒体和互动艺术作品中。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员