Neural machine translation (NMT), a new approach to machine translation, has achieved promising results comparable to those of traditional approaches such as statistical machine translation (SMT). Despite its recent success, NMT cannot handle a larger vocabulary because training complexity and decoding complexity proportionally increase with the number of target words. This problem becomes even more serious when translating patent documents, which contain many technical terms that are observed infrequently. In NMTs, words that are out of vocabulary are represented by a single unknown token. In this paper, we propose a method that enables NMT to translate patent sentences comprising a large vocabulary of technical terms. We train an NMT system on bilingual data wherein technical terms are replaced with technical term tokens; this allows it to translate most of the source sentences except technical terms. Further, we use it as a decoder to translate source sentences with technical term tokens and replace the tokens with technical term translations using SMT. We also use it to rerank the 1,000-best SMT translations on the basis of the average of the SMT score and that of the NMT rescoring of the translated sentences with technical term tokens. Our experiments on Japanese-Chinese patent sentences show that the proposed NMT system achieves a substantial improvement of up to 3.1 BLEU points and 2.3 RIBES points over traditional SMT systems and an improvement of approximately 0.6 BLEU points and 0.8 RIBES points over an equivalent NMT system without our proposed technique.


翻译:机器翻译(NMT)是机器翻译的一种新方法,取得了与统计机翻译(SMT)等传统方法相似的有希望的成果。尽管NMT最近取得了成功,但由于培训复杂程度和与目标字数成比例的增加,NMT无法处理更大的词汇,因为培训复杂程度和解码复杂程度随着目标字数的增加而成比例地增加。在翻译专利文件时,这个问题变得更加严重,因为专利文件有许多技术术语不经常被观察到。在NMTs中,词汇外的字用一个未知符号表示。在本文中,我们建议一种方法,使NMTT能够翻译专利判决,包括大量技术术语词汇。我们在双语数据方面培训了NMT系统,用技术术语取代技术术语;这使它能够翻译大部分源语句,但技术术语除外。此外,我们用它作为解码,用技术术语来翻译源句,用技术术语译文代替代用SMT(SMT)。我们还利用它,根据SMT的平均值和NMTNM(NM)将翻译的NM(NMT)句改为技术术语的等号)系统,用技术术语,用RMTMT(RMT(RMT)和RMT)B-MT(RMT)和RMT)B-31(RMTMT)的G)的顺序进行实质性的升级(R-S-S-31)的升级的成绩的成绩,我们对R-S-31)的专利句进行实质性的改进。

0
下载
关闭预览

相关内容

【Google】无监督机器翻译,Unsupervised Machine Translation
专知会员服务
36+阅读 · 2020年3月3日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
自然语言处理(二)机器翻译 篇 (NLP: machine translation)
DeepLearning中文论坛
10+阅读 · 2015年7月1日
Arxiv
3+阅读 · 2018年3月28日
Arxiv
6+阅读 · 2018年2月28日
Arxiv
6+阅读 · 2018年2月26日
VIP会员
相关VIP内容
【Google】无监督机器翻译,Unsupervised Machine Translation
专知会员服务
36+阅读 · 2020年3月3日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
自然语言处理(二)机器翻译 篇 (NLP: machine translation)
DeepLearning中文论坛
10+阅读 · 2015年7月1日
Top
微信扫码咨询专知VIP会员