Real-world applications routinely make authorization decisions based on dynamic computation. Reasoning about dynamically computed authority is challenging. Integrity of the system might be compromised if attackers can improperly influence the authorizing computation. Confidentiality can also be compromised by authorization, since authorization decisions are often based on sensitive data such as membership lists and passwords. Previous formal models for authorization do not fully address the security implications of permitting trust relationships to change, which limits their ability to reason about authority that derives from dynamic computation. Our goal is an approach to constructing dynamic authorization mechanisms that do not violate confidentiality or integrity. The Flow-Limited Authorization Calculus (FLAC) is a simple, expressive model for reasoning about dynamic authorization as well as an information flow control language for securely implementing various authorization mechanisms. FLAC combines the insights of two previous models: it extends the Dependency Core Calculus with features made possible by the Flow-Limited Authorization Model. FLAC provides strong end-to-end information security guarantees even for programs that incorporate and implement rich dynamic authorization mechanisms. These guarantees include noninterference and robust declassification, which prevent attackers from influencing information disclosures in unauthorized ways. We prove these security properties formally for all FLAC programs and explore the expressiveness of FLAC with several examples.


翻译:真实世界应用程序通常根据动态计算法做出授权决定。根据动态计算权的理由具有挑战性。如果攻击者对授权计算有不当影响,系统的完整性可能受到损害。保密也可能因授权而受到损害,因为授权决定往往以成员名单和密码等敏感数据为基础。以前的正式授权模式没有完全解决允许信任关系改变的安全影响,这限制了他们根据动态计算法获得授权的能力。我们的目标是建立动态授权机制,不违反保密或完整性。流动限制授权计算法(FLAC)是一个简单明晰的动态授权推理模型,还有一个信息流通控制语言,用于安全地实施各种授权机制。 FLAC综合了前两种模式的见解:将依赖性核心计算法与流动有限授权模式带来的特征加以扩展。FLAC提供了强有力的端对端信息安全保障保证,即使对包含和实施丰富的动态授权机制的方案也是如此。这些保证包括不干预和稳健的解分类,防止攻击者以未经授权的方式影响信息披露。我们用FLAC系统的所有安全性实例正式探索这些安全特性。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
专知会员服务
77+阅读 · 2021年3月16日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
73+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年6月10日
Arxiv
0+阅读 · 2021年6月9日
Metrics for Explainable AI: Challenges and Prospects
Arxiv
4+阅读 · 2018年12月11日
VIP会员
相关VIP内容
专知会员服务
77+阅读 · 2021年3月16日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
73+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员