In this work, we present a general, efficient, and provably robust representation for intrinsic triangulations. These triangulations have emerged as a powerful tool for robust geometry processing of surface meshes, taking a low-quality mesh and retriangulating it with high-quality intrinsic triangles. However, existing representations either support only edge flips, or do not offer a robust procedure to recover the common subdivision, that is, how the intrinsic triangulation sits along the original surface. To build a general-purpose robust structure, we extend the framework of normal coordinates, which have been deeply studied in topology, as well as the more recent idea of roundabouts from geometry processing, to support a variety of mesh processing operations like vertex insertions, edge splits, etc. The basic idea is to store an integer per mesh edge counting the number of times a curve crosses that edge. We show that this paradigm offers a highly effective representation for intrinsic triangulations with strong robustness guarantees. The resulting data structure is general and efficient, while offering a guarantee of always encoding a valid subdivision. Among other things, this allows us to generate a high-quality intrinsic Delaunay refinement of all manifold meshes in the challenging Thingi10k dataset for the first time. This enables a broad class of existing surface geometry algorithms to be applied out-of-the-box to low-quality triangulations.
翻译:在这项工作中,我们展示了一个通用的、高效的和可察觉的强强的自然三角形代表。这些三角形已经形成一个强大的工具,用于对地表 meshes 进行稳健的几何处理,采用低质量的网格,用高质量的内在三角形对它进行重新定位。然而,现有的代表形式要么只支持边缘翻转,要么不提供一种强有力的程序来恢复共同的分形,即,内在三角形如何与原始表面相坐在一起。为了建立一个通用的稳健结构,我们扩展了正常坐标框架,在地表学上已经深入研究过正常坐标框架,以及最近对地貌学处理的环形结构的构想,以支持各种网形处理作业,如顶部插入、边缘分割等。基本的想法是储存一个整数的每网形边缘,计算出该边缘的曲线数。我们表明,这一范式为内在三角形提供了高度有效的代表性,并具有强大的稳健健的保证。由此形成的数据结构是普遍和高效的,同时提供了始终将一个有效的地理结构下层次结构与地理结构进行整合的保证,同时将一个有效的固定地从地理结构转换,从几何体处理,从而使得其他高质量数据能够使我们产生一个具有挑战性地平质的三等高质量。