Latent position network models are a versatile tool in network science; applications include clustering entities, controlling for causal confounders, and defining priors over unobserved graphs. Estimating each node's latent position is typically framed as a Bayesian inference problem, with Metropolis within Gibbs being the most popular tool for approximating the posterior distribution. However, it is well-known that Metropolis within Gibbs is inefficient for large networks; the acceptance ratios are expensive to compute, and the resultant posterior draws are highly correlated. In this article, we propose an alternative Markov chain Monte Carlo strategy -- defined using a combination of split Hamiltonian Monte Carlo and Firefly Monte Carlo -- that leverages the posterior distribution's functional form for more efficient posterior computation. We demonstrate that these strategies outperform Metropolis within Gibbs and other algorithms on synthetic networks, as well as on real information-sharing networks of teachers and staff in a school district.
翻译:隐藏位置网络模型是网络科学的多用途工具; 应用程序包括集群实体、 控制因果混杂者, 以及定义未观测的图表的前缀。 估计每个节点的潜在位置通常被描述为贝叶斯推论问题, 吉布斯内部的大都会是接近后座分布的最受欢迎的工具。 然而, 众所周知, 吉布斯内部的大都会对于大型网络来说效率低下; 接受率昂贵难以计算, 结果的后座画画画非常相近。 文章中, 我们提出一个替代的马可夫链 Monte Carlo 战略, 其定义是将汉密尔顿· 蒙特卡洛 和 Firefliple Monte Carlo 组合起来, 利用远端分布的功能形式进行更有效的后座图计算。 我们证明这些战略超越了吉布斯内部的大都会和合成网络上的其他算法, 以及学校区教师和工作人员真正的信息共享网络。