Assuring traceability from requirements to implementation is a key element when developing safety critical software systems. Traditionally, this traceability is ensured by a waterfall-like process, where phases follow each other, and tracing between different phases can be managed. However, new software development paradigms, such as continuous software engineering and DevOps, which encourage a steady stream of new features, committed by developers in a seemingly uncontrolled fashion in terms of former phasing, challenge this view. In this paper, we introduce our approach that adds traceability capabilities to GitHub, so that the developers can act like they normally do in GitHub context but produce the documentation needed by the regulatory purposes in the process.


翻译:确保从要求到执行的可追踪性是发展安全关键软件系统的一个关键要素。 传统上,这种可追踪性是通过类似瀑布的过程来保证的,在这个过程中,各个阶段相继相继,不同阶段之间的追踪可以管理。 但是,新的软件开发模式,如连续软件工程和DevOps,鼓励开发者在前阶段阶段以看似不受控制的方式以稳定的方式进行的新特征流,对这一观点提出了挑战。 在本文件中,我们引入了为GitHub增加可追踪能力的方法,以便开发者能够像在GitHub环境中通常那样行事,但提供进程中监管目的所需要的文件。

0
下载
关闭预览

相关内容

GitHub.com 使用 Git 作为版本控制系统(version control system)提供在线源码托管的服务,同时是个有社交功能的开发者社区。 国外类似服务: Bitbucket.com
Gitlab.com
国内类似服务:
Coding.net
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【电子书推荐】Data Science with Python and Dask
专知会员服务
44+阅读 · 2019年6月1日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
carla 体验效果 及代码
CreateAMind
7+阅读 · 2018年2月3日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Arxiv
0+阅读 · 2021年12月16日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
carla 体验效果 及代码
CreateAMind
7+阅读 · 2018年2月3日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Top
微信扫码咨询专知VIP会员