Multi-behavior recommendation, which exploits auxiliary behaviors (e.g., click and cart) to help predict users' potential interactions on the target behavior (e.g., buy), is regarded as an effective way to alleviate the data sparsity or cold-start issues in recommendation. Multi-behaviors are often taken in certain orders in real-world applications (e.g., click>cart>buy). In a behavior chain, a latter behavior usually exhibits a stronger signal of user preference than the former one does. Most existing multi-behavior models fail to capture such dependencies in a behavior chain for embedding learning. In this work, we propose a novel multi-behavior recommendation model with cascading graph convolution networks (named MB-CGCN). In MB-CGCN, the embeddings learned from one behavior are used as the input features for the next behavior's embedding learning after a feature transformation operation. In this way, our model explicitly utilizes the behavior dependencies in embedding learning. Experiments on two benchmark datasets demonstrate the effectiveness of our model on exploiting multi-behavior data. It outperforms the best baseline by 33.7% and 35.9% on average over the two datasets in terms of Recall@10 and NDCG@10, respectively.
翻译:多行为推荐利用辅助行为(例如点击和购物车)来帮助预测用户在目标行为(例如购买)中的潜在互动,被认为是减轻推荐中数据稀疏或冷启动问题的有效方法。在现实世界的应用中,多种行为往往按照一定的顺序进行(例如点击>购物车>购买)。在行为链中,后一个行为通常展示出比前一个更强的用户偏好信号。大多数现有的多行为模型在嵌入学习中未能捕捉到此类依赖关系。在这项工作中,我们提出了一种新颖的多行为推荐模型,称为级联图卷积网络(Multi-Behavior Recommendation with Cascading Graph Convolution Networks,MB-CGCN)。在MB-CGCN中,从一种行为学习的嵌入被用作下一个行为的嵌入学习的输入特征,经过特征转换操作后。这样,我们的模型在嵌入学习中明确利用了行为之间的依赖关系。在两个基准数据集上进行的实验表明,我们的模型利用多行为数据的效果很好。在Recall@10和NDCG@10两个指标上,它比最佳基线平均提高了33.7%和35.9%。