This contribution argues that Reddit, as a massive, categorized, open-access dataset, is a useful data source, for "almost any topic". Hence, it can be used in data science, e.g. for knowledge exploration. This statement is backed-up with presented analysis, based on 180 manually annotated papers, related to Reddit itself, and data acquired from popular databases of scientific papers. Finally, an open source tool is introduced, which provides an easy access to Reddit resources, and an exploratory data analysis of how Reddit covers selected topics. These functions can be used as a prelude analysis to a broader exploration of Reddit's applicability.


翻译:本文认为Reddit是一个大规模、分类明确、开放获取的数据集,可用于“几乎任何主题”的数据科学和知识探索。这一观点是基于对180篇手动标注的关于Reddit本身的论文及来自科学论文流行数据库的数据分析的支持。最后,介绍了一种开源工具,可方便访问Reddit资源,并探索Reddit对选定主题的覆盖情况。这些功能可作为探索Reddit适用性的前奏分析。

0
下载
关闭预览

相关内容

数据科学(英語:data science)是一门利用数据学习知识的学科,其目标是通过从数据中提取出有价值的部分来生产数据产品。 它结合了诸多领域中的理论和技术,包括应用数学、统计、模式识别、机器学习、数据可视化、数据仓库以及高性能计算。 数据科学通过运用各种相关的数据来帮助非专业人士理解问题。
【干货书】面向计算科学和工程的Python导论,167页pdf
专知会员服务
42+阅读 · 2021年4月7日
《机器学习思维导图》,一图掌握机器学习知识要点
专知会员服务
68+阅读 · 2021年1月12日
【2020新书】数据科学与机器学习导论,220页pdf
专知会员服务
81+阅读 · 2020年9月14日
专知会员服务
124+阅读 · 2020年9月8日
数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
42+阅读 · 2020年7月27日
【新书】Python数据科学食谱(Python Data Science Cookbook)
专知会员服务
115+阅读 · 2020年1月1日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
AI界的State of the Art都在这里了
机器之心
12+阅读 · 2018年12月10日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月29日
Arxiv
21+阅读 · 2022年11月8日
Arxiv
37+阅读 · 2021年9月28日
Arxiv
151+阅读 · 2017年8月1日
VIP会员
相关VIP内容
【干货书】面向计算科学和工程的Python导论,167页pdf
专知会员服务
42+阅读 · 2021年4月7日
《机器学习思维导图》,一图掌握机器学习知识要点
专知会员服务
68+阅读 · 2021年1月12日
【2020新书】数据科学与机器学习导论,220页pdf
专知会员服务
81+阅读 · 2020年9月14日
专知会员服务
124+阅读 · 2020年9月8日
数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
42+阅读 · 2020年7月27日
【新书】Python数据科学食谱(Python Data Science Cookbook)
专知会员服务
115+阅读 · 2020年1月1日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
AI界的State of the Art都在这里了
机器之心
12+阅读 · 2018年12月10日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员