[Context] Large Language Models (LLMs) rely on domain-specific datasets to achieve robust performance across training and inference stages. However, in Requirements Engineering (RE), data scarcity remains a persistent limitation reported in surveys and mapping studies. [Question/Problem] Although there are multiple datasets supporting LLM-based RE tasks (LLM4RE), they are fragmented and poorly characterized, limiting reuse and comparability. This research addresses the limited visibility and characterization of datasets used in LLM4RE. We investigate which public datasets are employed, how they can be systematically characterized, and which RE tasks and dataset descriptors remain under-represented. [Ideas/Results] To address this, we conduct a systematic mapping study to identify and analyse datasets used in LLM4RE research. A total of 62 publicly available datasets are referenced across 43 primary studies. Each dataset is characterized along descriptors such as artifact type, granularity, RE stage, task, domain, and language. Preliminary findings show multiple research gaps, including limited coverage for elicitation tasks, scarce datasets for management activities beyond traceability, and limited multilingual availability. [Contribution] This research preview offers a public catalogue and structured characterization scheme to support dataset selection, comparison, and reuse in LLM4RE research. Future work will extend the scope to grey literature, as well as integration with open dataset and benchmark repositories.


翻译:[背景] 大型语言模型(LLMs)在训练和推理阶段依赖领域特定数据集以实现鲁棒性能。然而,在需求工程(RE)领域,调查与图谱研究持续报告数据稀缺仍是主要限制。[问题] 尽管存在多个支持基于LLM的RE任务(LLM4RE)的数据集,但它们呈现碎片化且特征描述不足,限制了复用性与可比性。本研究针对LLM4RE所用数据集可见度低、特征描述有限的问题展开研究。我们探究了哪些公共数据集被使用、如何系统化表征这些数据集,以及哪些RE任务与数据集描述符仍未被充分覆盖。[方法与结果] 为此,我们开展了系统性图谱研究以识别和分析LLM4RE研究中使用的数据集。通过对43项核心研究的梳理,共发现62个被引用的公开数据集。每个数据集均按制品类型、粒度、RE阶段、任务、领域和语言等描述符进行特征刻画。初步研究结果揭示了多个研究空白,包括需求获取任务覆盖有限、可追溯性之外的管理活动数据集稀缺,以及多语言数据资源不足。[贡献] 本研究成果预告提供了公共目录与结构化表征框架,以支持LLM4RE研究中的数据选择、比较与复用。后续研究将扩展至灰色文献范畴,并与开放数据集及基准测试库进行整合。

0
下载
关闭预览

相关内容

数据集,又称为资料集、数据集合或资料集合,是一种由数据所组成的集合。
Data set(或dataset)是一个数据的集合,通常以表格形式出现。每一列代表一个特定变量。每一行都对应于某一成员的数据集的问题。它列出的价值观为每一个变量,如身高和体重的一个物体或价值的随机数。每个数值被称为数据资料。对应于行数,该数据集的数据可能包括一个或多个成员。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员