Over-parametrization was a crucial ingredient for recent developments in inference and machine-learning fields. However a good theory explaining this success is still lacking. In this paper we study a very simple case of mismatched over-parametrized algorithm applied to one of the most studied inference problem: the planted clique problem. We analyze a Monte Carlo (MC) algorithm in the same class of the famous Jerrum algorithm. We show how this MC algorithm is in general suboptimal for the recovery of the planted clique. We show however how to enhance its performances by adding a (mismatched) parameter: the temperature; we numerically find that this over-parametrized version of the algorithm can reach the supposed algorithmic threshold for the planted clique problem.
翻译:超平衡化是最近推论和机器学习领域发展的关键要素。 但是仍然缺乏解释这一成功的良好理论。 在本文中,我们研究了一个非常简单的不匹配的超平衡算法案例,该案例适用于研究最多的推论问题之一:种植的碎块问题。我们在著名的Jerrum算法的同一类中分析了蒙特卡洛(MC)算法。我们展示了这种MC算法一般对于恢复所栽种的碎块来说如何不最理想。然而,我们展示了如何通过添加一个(分离的)参数来提高它的性能:温度;我们从数字上发现,这种过于平衡的算法版本可以达到所栽种的碎块问题的假定算法阈值。