Numerical discretization of the large-scale Maxwell's equations leads to an ill-conditioned linear system that is challenging to solve. The key requirement for successive solutions of this linear system is to choose an efficient solver. In this work we use Perfectly Matched Layers (PML) to increase this efficiency. PML have been widely used to truncate numerical simulations of wave equations due to improving the accuracy of the solution instead of using absorbing boundary conditions (ABCs). Here, we will develop an efficient solver by providing an alternative use of PML as transmission conditions at the interfaces between subdomains in our domain decomposition method. We solve Maxwell's equations and assess the convergence rate of our solutions compared to the situation where absorbing boundary conditions are chosen as transmission conditions.
翻译:大型 Maxwell 方程式的量化分解导致一个条件不完善的线性系统, 解决起来是困难的。 这个线性系统连续解决方案的关键要求是选择一个高效的解答器。 在这项工作中,我们使用极匹配层( PML) 来提高这一效率。 PML 被广泛用于截断波式方程式的数字模拟, 原因是提高了解决方案的准确性, 而不是使用吸收边界条件( ABCs ) 。 在这里, 我们将开发一个高效的解答器, 提供一种替代方法, 将 PML 用作我们域分解方法子域域间界面的传输条件。 我们解析了 Maxwell 的方程式, 并评估了我们解决方案的趋同率, 以吸收边界条件作为传输条件。