Measuring the colorfulness of a natural or virtual scene is critical for many applications in image processing field ranging from capturing to display. In this paper, we propose the first deep learning-based colorfulness estimation metric. For this purpose, we develop a color rating model which simultaneously learns to extracts the pertinent characteristic color features and the mapping from feature space to the ideal colorfulness scores for a variety of natural colored images. Additionally, we propose to overcome the lack of adequate annotated dataset problem by combining/aligning two publicly available colorfulness databases using the results of a new subjective test which employs a common subset of both databases. Using the obtained subjectively annotated dataset with 180 colored images, we finally demonstrate the efficacy of our proposed model over the traditional methods, both quantitatively and qualitatively.
翻译:测量自然或虚拟场景的色度对于从捕获到显示的图像处理场的许多应用至关重要。 在本文中,我们提出了第一个基于学习的深度彩度估计指标。 为此,我们开发了一个颜色评级模型,同时学习提取相关特征的颜色特征和从地貌空间到各种自然彩色图像的理想色度分数。此外,我们提议通过结合/调整两个公开提供的彩度数据库,利用使用两个数据库共同子集的新主观测试结果,来克服缺乏适当的附加说明的数据集问题。我们利用获得的带有180个彩色图像的主观附加说明数据集,最终在定量和定性上展示了我们拟议模型在传统方法上的效力。