Starting from the first principle I derive an unsupervised learning method named even code to model local statistics of natural images. The first version uses orthogonal bases with independent states to model simple probability distribution of a few pixels. The second version uses a microscopic loss function to learn a nonlinear sparse binary representation of image patches. The distance in the binary representation space reflects image patch similarity. The learned model also has local edge detecting and orientation selective units like early visual systems.
翻译:从第一项原则开始,我得出一种不受监督的学习方法,称为甚至代号,以模拟自然图像的本地统计。第一个版本使用与独立状态的正方形基来模拟几个像素的简单概率分布。第二个版本使用显微损耗函数来学习一个非线性稀疏的图像补丁的二进制表达式。二进制代表空间的距离反映了图像的相似性。学习过的模型还具有局部边缘检测和定向选择单元,如早期视觉系统。