Graph Convolutional Networks (GCNs) have emerged as the state-of-the-art deep learning model for representation learning on graphs. However, it remains notoriously challenging to train and inference GCNs over large graph datasets, limiting their application to large real-world graphs and hindering the exploration of deeper and more sophisticated GCN graphs. This is because as the graph size grows, the sheer number of node features and the large adjacency matrix can easily explode the required memory and data movements. To tackle the aforementioned challenges, we explore the possibility of drawing lottery tickets when sparsifying GCN graphs, i.e., subgraphs that largely shrink the adjacency matrix yet are capable of achieving accuracy comparable to or even better than their full graphs. Specifically, we for the first time discover the existence of graph early-bird (GEB) tickets that emerge at the very early stage when sparsifying GCN graphs, and propose a simple yet effective detector to automatically identify the emergence of such GEB tickets. Furthermore, we advocate graph-model co-optimization and develop a generic efficient GCN early-bird training framework dubbed GEBT that can significantly boost the efficiency of GCN training by (1) drawing joint early-bird tickets between the GCN graphs and models and (2) enabling simultaneously sparsification of both the GCN graphs and models. Experiments on various GCN models and datasets consistently validate our GEB finding and the effectiveness of our GEBT, e.g., our GEBT achieves up to 80.2% ~ 85.6% and 84.6% ~ 87.5% savings of GCN training and inference costs while offering a comparable or even better accuracy as compared to state-of-the-art methods. Our source code and supplementary appendix are available at https://github.com/RICE-EIC/Early-Bird-GCN.


翻译:图表变色网络(GCNs)已成为在图表上进行代表学习的最先进的深层次学习模型。然而,在大型图形数据集上培训和推断GCNs仍然有臭名昭著的挑战,它们的应用仅限于大型真实世界图形,阻碍了更深、更复杂的GCN图的探索。这是因为随着图形尺寸的扩大,节点特性的庞大数量和大型相近矩阵很容易引爆所需的记忆和数据移动。为了应对上述挑战,我们探索了在对GCN的图形进行加宽测试时,抽彩票的可能性。也就是说,在对大图表数据集进行大量缩缩小的GCNs(GCNs)、GCNs(GCNs)和GGG-GSI(GG)的精度模型同时,我们第一次发现GEB(GGB)的速率票(GGB)的存在,然后提出一个简单有效的检测器来自动识别GEB的出现。此外,我们提倡将GCNS-CNseral化电子模型与GE-GEB的精度模型进行对比,然后通过GGEO-GO-B的精度模型和GEGIG-GIFF的精度模型进行高效的早期测试,然后在G-G-GO-G-I-IGVA中进行高效的精度培训中,然后进行高效的预化和高级的预能能能能能能能能能能能能能能能能能能化的早期的模型中可以实现。

0
下载
关闭预览

相关内容

图卷积网络(简称GCN),由Thomas Kpif于2017年在论文Semi-supervised classification with graph convolutional networks中提出。它为图(graph)结构数据的处理提供了一个崭新的思路,将深度学习中常用于图像的卷积神经网络应用到图数据上。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
专知会员服务
11+阅读 · 2021年3月21日
专知会员服务
33+阅读 · 2021年2月21日
专知会员服务
57+阅读 · 2021年1月26日
一份简单《图神经网络》教程,28页ppt
专知会员服务
125+阅读 · 2020年8月2日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
已删除
将门创投
3+阅读 · 2019年11月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
13+阅读 · 2021年6月14日
Arxiv
19+阅读 · 2020年7月13日
VIP会员
相关资讯
已删除
将门创投
3+阅读 · 2019年11月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员