At the moment, urban mobility research and governmental initiatives are mostly focused on motor-related issues, e.g. the problems of congestion and pollution. And yet, we can not disregard the most vulnerable elements in the urban landscape: pedestrians, exposed to higher risks than other road users. Indeed, safe, accessible, and sustainable transport systems in cities are a core target of the UN's 2030 Agenda. Thus, there is an opportunity to apply advanced computational tools to the problem of traffic safety, in regards especially to pedestrians, who have been often overlooked in the past. This paper combines public data sources, large-scale street imagery and computer vision techniques to approach pedestrian and vehicle safety with an automated, relatively simple, and universally-applicable data-processing scheme. The steps involved in this pipeline include the adaptation and training of a Residual Convolutional Neural Network to determine a hazard index for each given urban scene, as well as an interpretability analysis based on image segmentation and class activation mapping on those same images. Combined, the outcome of this computational approach is a fine-grained map of hazard levels across a city, and an heuristic to identify interventions that might simultaneously improve pedestrian and vehicle safety. The proposed framework should be taken as a complement to the work of urban planners and public authorities.
翻译:目前,城市流动性研究和政府举措主要集中在与汽车有关的问题上,如拥堵和污染问题。然而,我们不能忽视城市景观中最脆弱的因素:行人,比其他道路使用者面临更高的风险。事实上,城市安全、无障碍和可持续的交通系统是联合国2030年议程的核心目标。因此,有机会将先进的计算工具应用于交通安全问题,特别是过去经常被忽视的行人。本文将公共数据来源、大规模街道图像和计算机视觉技术与自动化、相对简单和普遍适用的数据处理计划结合起来,以接近行人和车辆安全。这一管道的步骤包括改造和培训一个残余革命神经网络,以确定每个特定城市的危害指数,以及根据图像分割和班级激活图绘制这些图像的可解释性分析。综合起来,这一计算方法的结果是一个城市危害水平的精密地图和计算机视觉技术,以自动、相对简单和普遍适用的数据处理计划为手段。这一管道所涉及的步骤包括改造和培训一个残余革命神经网络,以确定每个特定城市景象的危险指数。以及基于图像的图像分割和课堂激活绘图的可解释性分析。这一计算方法的结果是一份城市危害水平的精细的地图,并补充了一个公共规划者框架。提出,可以同时改进行车和车辆的安全。