Considering the level of competition prevailing in Business-to-Consumer (B2C) E-Commerce domain and the huge investments required to attract new customers, firms are now giving more focus to reduce their customer churn rate. Churn rate is the ratio of customers who part away with the firm in a specific time period. One of the best mechanism to retain current customers is to identify any potential churn and respond fast to prevent it. Detecting early signs of a potential churn, recognizing what the customer is looking for by the movement and automating personalized win back campaigns are essential to sustain business in this era of competition. E-Commerce firms normally possess large volume of data pertaining to their existing customers like transaction history, search history, periodicity of purchases, etc. Data mining techniques can be applied to analyse customer behaviour and to predict the potential customer attrition so that special marketing strategies can be adopted to retain them. This paper proposes an integrated model that can predict customer churn and also recommend personalized win back actions.


翻译:考虑到商业对消费者(B2C)电子商务领域的竞争水平以及吸引新客户所需的巨额投资,各公司现在更加关注降低客户的消费率。Curn比率是特定时期内与公司分离的客户比率。保留现有客户的最佳机制之一是查明任何潜在的贸易量,并迅速作出反应加以防止。发现潜在贸易量的早期迹象,承认客户在运动中寻找什么,实现个人化赢回运动的自动化对于在竞争时代维持商业至关重要。电子商务公司通常拥有大量与现有客户有关的数据,如交易历史、历史搜索、采购周期等。数据挖掘技术可用于分析客户行为,预测潜在的客户消耗量,以便采用特殊的营销战略予以保留。本文提出了一个综合模型,可以预测客户的消费量,并建议个人化赢回行动。

0
下载
关闭预览

相关内容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI杂志。 Publisher:Elsevier。 SIT:http://dblp.uni-trier.de/db/journals/integration/
【杜克-Bhuwan Dhingra】语言模型即知识图谱,46页ppt
专知会员服务
65+阅读 · 2021年11月15日
专知会员服务
123+阅读 · 2020年9月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
LibRec 精选:如何评估交互式推荐系统?
LibRec智能推荐
8+阅读 · 2019年5月5日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
[DLdigest-8] 每日一道算法
深度学习每日摘要
4+阅读 · 2017年11月2日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Arxiv
8+阅读 · 2018年2月23日
VIP会员
相关资讯
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
LibRec 精选:如何评估交互式推荐系统?
LibRec智能推荐
8+阅读 · 2019年5月5日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
[DLdigest-8] 每日一道算法
深度学习每日摘要
4+阅读 · 2017年11月2日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Top
微信扫码咨询专知VIP会员