Today's distributed tracing frameworks are ill-equipped to troubleshoot rare edge-case requests. The crux of the problem is a trade-off between specificity and overhead. On the one hand, frameworks can indiscriminately select requests to trace when they enter the system (head sampling), but this is unlikely to capture a relevant edge-case trace because the framework cannot know which requests will be problematic until after-the-fact. On the other hand, frameworks can trace everything and later keep only the interesting edge-case traces (tail sampling), but this has high overheads on the traced application and enormous data ingestion costs. In this paper we circumvent this trade-off for any edge-case with symptoms that can be programmatically detected, such as high tail latency, errors, and bottlenecked queues. We propose a lightweight and always-on distributed tracing system, Hindsight, which implements a retroactive sampling abstraction: instead of eagerly ingesting and processing traces, Hindsight lazily retrieves trace data only after symptoms of a problem are detected. Hindsight is analogous to a car dash-cam that, upon detecting a sudden jolt in momentum, persists the last hour of footage. Developers using Hindsight receive the exact edge-case traces they desire without undue overhead or dependence on luck. Our evaluation shows that Hindsight scales to millions of requests per second, adds nanosecond-level overhead to generate trace data, handles GB/s of data per node, transparently integrates with existing distributed tracing systems, and successfully persists full, detailed traces in real-world use cases when edge-case problems are detected.


翻译:今天分布式的追踪框架不足以解决稀有的边缘请求。 问题的症结在于特殊性和管理管理之间的权衡。 一方面, 框架可以任意选择在进入系统时进行追踪的请求( 头抽样), 但是这不太可能捕捉到相关的边缘案例追踪, 因为框架无法在事后之前知道哪些请求会有问题 。 另一方面, 框架可以追踪一切, 后来只能追踪有趣的边缘案例的痕迹( 尾巴取样 ), 但问题的关键在于追踪应用程序和数据吸收成本之间的权衡。 在本文中, 我们绕过任何边缘案例的权衡, 其症状可以通过程序检测得到, 如高尾部延缩、 错误和瓶颈列队列。 我们建议一个轻度和总是分布式追踪系统, 因为在事后检测和处理痕迹时, Hindsights 可能会追踪所有线索, 但是Hindsight Lazily在检测到问题的症状后才能检索到追踪跟踪数据。 最后, 与车尾递缩缩缩缩缩缩缩缩略图相似, 在检测到我们头部的图像时, 持续地记录。

0
下载
关闭预览

相关内容

专知会员服务
123+阅读 · 2020年9月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年6月14日
Arxiv
92+阅读 · 2021年5月17日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
Arxiv
35+阅读 · 2019年11月7日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员