The research evaluates lightweight medical abstract classification methods to establish their maximum performance capabilities under financial budget restrictions. On the public medical abstracts corpus, we finetune BERT base and Distil BERT with three objectives cross entropy (CE), class weighted CE, and focal loss under identical tokenization, sequence length, optimizer, and schedule. DistilBERT with plain CE gives the strongest raw argmax trade off, while a post hoc operating point selection (validation calibrated, classwise thresholds) sub stantially improves deployed performance; under this tuned regime, focal benefits most. We report Accuracy, Macro F1, and WeightedF1, release evaluation artifacts, and include confusion analyses to clarify error structure. The practical takeaway is to start with a compact encoder and CE, then add lightweight calibration or thresholding when deployment requires higher macro balance.
翻译:本研究评估了轻量级医学摘要分类方法,以确定其在财务预算限制下的最大性能潜力。在公开医学摘要语料库上,我们在相同的分词、序列长度、优化器和训练计划下,对BERT base和DistilBERT进行了三种目标函数的微调:交叉熵(CE)、类别加权CE和焦点损失。使用普通CE的DistilBERT提供了最强的原始argmax权衡,而事后操作点选择(验证校准、类特定阈值)显著提升了部署性能;在此调优机制下,焦点损失获益最大。我们报告了准确率、宏平均F1和加权F1指标,发布了评估工件,并包含混淆分析以阐明错误结构。实际应用建议是:从紧凑编码器与CE开始,当部署需要更高宏平衡时再添加轻量级校准或阈值调整。