We present deterministic algorithms for the Hidden Subgroup Problem. The first algorithm, for abelian groups, achieves the same asymptotic worst-case query complexity as the optimal randomized algorithm, namely O($\sqrt{ n}\,$), where $n$ is the order of the group. The analogous algorithm for non-abelian groups comes within a $\sqrt{ \log n}$ factor of the optimal randomized query complexity. The best known randomized algorithm for the Hidden Subgroup Problem has expected query complexity that is sensitive to the input, namely O($\sqrt{ n/m}\,$), where $m$ is the order of the hidden subgroup. In the first version of this article (arXiv:2104.14436v1 [cs.DS]), we asked if there is a deterministic algorithm whose query complexity has a similar dependence on the order of the hidden subgroup. Prompted by this question, Ye and Li (arXiv:2110.00827v1 [cs.DS]) present deterministic algorithms for abelian groups which solve the problem with O($\sqrt{ n/m }\,$ ) queries, and find the hidden subgroup with O($\sqrt{ n (\log m) / m} + \log m$) queries. Moreover, they exhibit instances which show that in general, the deterministic query complexity of the problem may be o($\sqrt{ n/m } \,$), and that of finding the entire subgroup may also be o($\sqrt{ n/m } \,$) or even $\omega(\sqrt{ n/m } \,)$. We present a different deterministic algorithm for the Hidden Subgroup Problem that also has query complexity O($\sqrt{ n/m }\,$) for abelian groups. The algorithm is arguably simpler. Moreover, it works for non-abelian groups, and has query complexity O($\sqrt{ (n/m) \log (n/m) }\,$) for a large class of instances, such as those over supersolvable groups. We build on this to design deterministic algorithms to find the hidden subgroup for all abelian and some non-abelian instances, at the cost of a $\log m$ multiplicative factor increase in the query complexity.


翻译:我们为隐藏分组问题提供确定式算法。 对于 隐藏分组来说, 第一个算法( 最已知的nroom化算法), 实现与输入敏感的类似 : O( $\ sqrt{ n ⁇, $, 美元是最佳随机算法 ), 即 O( $\ sqrt{ n ⁇, 美元) 。 在第一个版本中, 美元是该组的顺序。 对于隐藏分组来说, 查询的复杂程度与 Nqrt{ / log n} 最佳随机化查询系数( 隐藏分组) 。 由这个问题推动, Ye 和 Li ( : 210.00827v1 (c.DS) 对输入敏感的查询复杂性, 即 O( $), 美元是隐藏分组的确定性算法 。

0
下载
关闭预览

相关内容

Group一直是研究计算机支持的合作工作、人机交互、计算机支持的协作学习和社会技术研究的主要场所。该会议将社会科学、计算机科学、工程、设计、价值观以及其他与小组工作相关的多个不同主题的工作结合起来,并进行了广泛的概念化。官网链接:https://group.acm.org/conferences/group20/
专知会员服务
21+阅读 · 2021年2月6日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【经典书】贝叶斯编程,378页pdf,Bayesian Programming
专知会员服务
247+阅读 · 2020年5月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
已删除
将门创投
5+阅读 · 2019年4月4日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2022年1月13日
Arxiv
0+阅读 · 2022年1月13日
Arxiv
0+阅读 · 2021年12月24日
Arxiv
3+阅读 · 2018年2月24日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
已删除
将门创投
5+阅读 · 2019年4月4日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员