A large proportion of Africa's infrastructure is yet to be built. Where and how these new buildings are constructed matters since today's decisions will last for decades. The resulting morphology of cities has lasting implications for a city's energy needs. Estimating and projecting these needs has always been challenging in Africa due to the lack of data. Yet, given the sweeping urbanisation expected in Africa over the next three decades, this obstacle must be overcome to guide cities towards a trajectory of sustainability and resilience. Based on the location and surface of nearly 200 million buildings on the continent, we estimate the inter-building distance of almost six thousand cities. Buildings' footprint data enables the construction of urban form indicators to compare African cities' elongation, sprawl and emptiness. We establish the BASE model, where the mean distance between buildings is a functional relation to the number of Buildings and their average Area, as well as the Sprawl and the Elongation of its spatial arrangement. The mean distance between structures in cities -- our proxy for its energy demands related to mobility -- grows faster than the square root of its population, resulting from the combined impact of a sublinear growth in the number of buildings and a sublinear increase in building size and sprawl. We show that when a city doubles its population, it triples the energy demand related to commutes.


翻译:大部分非洲基础设施尚未建成。 这些新建筑在哪些地方以及如何建造,自今天的决定将持续数十年之久,这些新建筑将会如何建造。 由此产生的城市形态对城市的能源需求具有持久影响。 由于缺乏数据,估计和预测这些需求在非洲一直具有挑战性。 然而,鉴于预期未来三十年非洲将会出现大规模的城市化,必须克服这一障碍,以引导城市走上可持续性和复原力的轨迹。 根据非洲大陆近2亿座建筑的位置和表面,我们估计了近6 000座城市的建筑间距离。建筑足迹数据使得城市形态指标的构建能够比较非洲城市的延长、扩展和空闲能源需求。我们建立了BASE模型,其中建筑物之间的平均距离与建筑数量及其平均面积的功能关系,以及其空间安排的扩展和延长。城市结构之间的平均距离 -- -- 我们与其流动性有关的能源需求相关的替代值 -- -- 比其人口平方根的距离要快得多。 建筑中的城市形式指标能够用来比较非洲城市城市的延长、扩展和空闲度指标。 我们建立了BASE模型模型, 显示其次级规模增长。

0
下载
关闭预览

相关内容

专知会员服务
40+阅读 · 2020年9月6日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年10月3日
Arxiv
0+阅读 · 2022年9月30日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员