Standard automatic metrics (such as BLEU) are problematic for document-level MT evaluation. They can neither distinguish document-level improvements in translation quality from sentence-level ones nor can they identify the specific discourse phenomena that caused the translation errors. To address these problems, we propose an automatic metric BlonD for document-level machine translation evaluation. BlonD takes discourse coherence into consideration by calculating the recall and distance of check-pointing phrases and tags, and further provides comprehensive evaluation scores by combining with n-gram. Extensive comparisons between BlonD and existing evaluation metrics are conducted to illustrate their critical distinctions. Experimental results show that BlonD has a much higher document-level sensitivity with respect to previous metrics. The human evaluation also reveals high Pearson R correlation values between BlonD scores and manual quality judgments.


翻译:标准自动衡量标准(如BLEU)对文件一级的MT评价来说有问题,它们既不能区分翻译质量的文件质量改进与判刑水平的改进,也不能辨别造成翻译错误的具体讨论现象。为了解决这些问题,我们提议为文件一级的机器翻译评价采用自动衡量标准BlonD。BlonD通过计算点字和标记的回调和距离,考虑到讨论的一致性,并通过与n-gg的结合,进一步提供全面的评价分数。BlonD与现有的评价指标进行了广泛的比较,以说明它们的重大区别。实验结果显示,BlonD对以前的指标具有更高的文件敏感性。人类评价还揭示了BlonD分数和人工质量判断之间的高皮尔逊 R 相关值。

0
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
4+阅读 · 2018年6月12日
Arxiv
5+阅读 · 2019年4月21日
Arxiv
3+阅读 · 2018年3月28日
Arxiv
6+阅读 · 2018年2月26日
VIP会员
相关VIP内容
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
4+阅读 · 2018年6月12日
Top
微信扫码咨询专知VIP会员