We argue that the most important statistical ideas of the past half century are: counterfactual causal inference, bootstrapping and simulation-based inference, overparameterized models and regularization, multilevel models, generic computation algorithms, adaptive decision analysis, robust inference, and exploratory data analysis. We discuss common features of these ideas, how they relate to modern computing and big data, and how they might be developed and extended in future decades. The goal of this article is to provoke thought and discussion regarding the larger themes of research in statistics and data science.
翻译:我们争论说,过去半个世纪最重要的统计思想是:反事实因果关系推断、靴子穿梭和模拟推论、过度参数化模型和正规化、多层次模型、通用计算算法、适应性决定分析、稳健推论和探索性数据分析。我们讨论了这些想法的共同特点、它们与现代计算和大数据的关系,以及如何在今后几十年中发展和扩大这些想法。本篇文章的目的是激发对统计和数据科学研究的更大主题进行思考和讨论。