Weather forecast plays an essential role in multiple aspects of the daily life of human beings. Currently, physics based numerical weather prediction is used to predict the weather and requires enormous amount of computational resources. In recent years, deep learning based models have seen wide success in many weather-prediction related tasks. In this paper we describe our experiments for the Weather4cast 2021 Challenge, where 8 hours of spatio-temporal weather data is predicted based on an initial one hour of spatio-temporal data. We focus on SmaAt-UNet, an efficient U-Net based autoencoder. With this model we achieve competent results whilst maintaining low computational resources. Furthermore, several approaches and possible future work is discussed at the end of the paper.
翻译:天气预报在人类日常生活的多个方面发挥着不可或缺的作用。目前,物理数字天气预测被用于预测天气,需要大量计算资源。近年来,深层学习模型在许多与天气有关的任务中取得了广泛成功。本文描述了2021年天气预报挑战的实验,其中根据最初一小时的时空空间数据预测了8小时的时空天气数据。我们关注SmaAt-UNet,这是一个高效的基于U-Net的自动编码器。我们利用这一模型在保持低计算资源的同时取得了胜任的成果。此外,在论文结尾部分讨论了若干办法和今后可能开展的工作。