The emergence of the Fog computing paradigm that leverages in-network virtualized resources raises important challenges in terms of resource and IoT application management in a heterogeneous environment offering only limited computing resources. In this work, we propose a novel Pareto-based approach for application placement close to the data sources called Multiobjective IoT application Placement in fOg (MAPO). MAPO models applications based on a finite state machine and uses three conflicting optimization objectives, namely completion time, energy consumption, and economic cost, considering both the computation and communication aspects. In contrast to existing solutions that optimize a single objective value, MAPO enables multi-objective energy and cost-aware application placement. To evaluate the quality of the MAPO placements, we created both simulated and real-world testbeds tailored for a set of medical IoT application case studies. Compared to the state-of-the-art approaches, MAPO reduces the economic cost by up to 27%, while decreasing the energy requirements by 23-68%, and optimizes the completion time by up to 7.3 times.
翻译:利用网络虚拟资源的“雾”计算模式的出现,在资源及互联网应用管理方面提出了重大挑战,因为这种模式在提供有限计算资源的不同环境中,资源与互联网应用管理都存在重大挑战。在这项工作中,我们提出一种新的“基于Pareto”的应用程序定位方法,以接近数据源,即多目标IoT应用程序放置在FOg(MAPO)中。MAPO模型应用基于有限的国家机器,使用三个相互矛盾的优化目标,即完成时间、能源消耗和经济成本。与优化单一目标价值的现有解决方案相反,MAPO提供了多目标能源和成本意识应用定位。为了评估MAPO配置的质量,我们为一套医学IoT应用案例研究创建了模拟和真实世界测试台。与最新方法相比,MAPO将经济成本降低到27 %,同时将能源需求降低23-68%,并将完成时间优化到7.3次。