We present a framework for calibration of parameters in elastoplastic constitutive models that is based on the use of automatic differentiation (AD). The model calibration problem is posed as a partial differential equation-constrained optimization problem where a finite element (FE) model of the coupled equilibrium equation and constitutive model evolution equations serves as the constraint. The objective function quantifies the mismatch between the displacement predicted by the FE model and full-field digital image correlation data, and the optimization problem is solved using gradient-based optimization algorithms. Forward and adjoint sensitivities are used to compute the gradient at considerably less cost than its calculation from finite difference approximations. Through the use of AD, we need only to write the constraints in terms of AD objects, where all of the derivatives required for the forward and inverse problems are obtained by appropriately seeding and evaluating these quantities. We present three numerical examples that verify the correctness of the gradient, demonstrate the AD approach's parallel computation capabilities via application to a large-scale FE model, and highlight the formulation's ease of extensibility to other classes of constitutive models.
翻译:我们提出了一个基于使用自动差异化(AD)校准弹性成份模型参数的框架。模型校准问题是一个部分差异方程式限制优化问题,在这种情况下,平衡方程和成份模型进化方程的有限要素(FE)模型成为制约因素。客观功能量化了FE模型预测的离位与全场数字图像相关数据之间的错位,优化问题则通过基于梯度的优化算法加以解决。前方和交错敏感度被用来以远远低于其从有限差差差近值计算的成本计算梯度。通过使用AD,我们只需用AD来写AD对象的限制因素,即通过适当预测和评价这些数量获得前方和反面问题所需的所有衍生物。我们提出三个数字例子,用以核实梯度的正确性,通过应用大型FE模型来证明AD方法的平行计算能力,并突出该公式易于被其他类型的组成模型所取代。