We investigate the problem of density estimation on the unit circle and the unit sphere from a computational perspective. Our primary goal is to develop new density estimators that are both rate-optimal and computationally efficient for direct implementation. After establishing these estimators, we derive closed-form expressions for probability estimates over regions of the circle and the sphere. Then, the proposed theories are supported by extensive simulation studies. The considered settings naturally arise when analyzing phenomena on the Earth's surface or in the sky (sphere), as well as directional or periodic phenomena (circle). The proposed approaches are broadly applicable, and we illustrate their usefulness through case studies in zoology, climatology, geophysics, and astronomy, which may be of independent interest. The methodologies developed here can be readily applied across a wide range of scientific domains.
翻译:本文从计算视角研究了单位圆与单位球面上的密度估计问题。我们的主要目标是开发新的密度估计方法,这些方法在速率上达到最优且计算高效,可直接实现。在建立这些估计量后,我们推导了圆与球面区域上概率估计的闭式表达式。随后,通过广泛的模拟研究验证了所提理论。这些设定在分析地球表面或天空(球面)现象,以及方向性或周期性现象(圆)时自然出现。所提出的方法具有广泛适用性,我们通过动物学、气候学、地球物理学和天文学的案例研究展示了其应用价值,这些案例本身也可能具有独立意义。本文开发的方法论可便捷地应用于广泛的科学领域。