Deep neural networks have recently shown great success in the task of blind source separation, both under monaural and binaural settings. Although these methods were shown to produce high-quality separations, they were mainly applied under offline settings, in which the model has access to the full input signal while separating the signal. In this study, we convert a non-causal state-of-the-art separation model into a causal and real-time model and evaluate its performance under both online and offline settings. We compare the performance of the proposed model to several baseline methods under anechoic, noisy, and noisy-reverberant recording conditions while exploring both monaural and binaural inputs and outputs. Our findings shed light on the relative difference between causal and non-causal models when performing separation. Our stateful implementation for online separation leads to a minor drop in performance compared to the offline model; 0.8dB for monaural inputs and 0.3dB for binaural inputs while reaching a real-time factor of 0.65. Samples can be found under the following link: https://kwanum.github.io/sagrnnc-stream-results/.


翻译:深神经网络最近显示,在寺庙和两边环境下,盲源分离的任务最近取得了巨大成功;虽然这些方法显示能够产生高质量的分离,但主要是在离线环境中应用,模型在分离信号时可以获取完整的输入信号;在这项研究中,我们将非因果状态的分离模型转换成因果和实时模型,并评价其在在线和离线环境中的性能;我们将拟议模型的性能与在厌食、吵闹和吵闹-反动记录条件下的若干基线方法进行比较,同时探索月经和双向投入和产出。我们的调查结果揭示了在进行分离时因果和非因果模式之间的相对差异。我们实施在线分离的状态导致与离线模型相比性能略有下降; 月经投入0.8dB和双向投入0.3dB,同时达到0.65的实时因子。 在以下链接下可以找到样本: https://kwanum.githubio/sagorn-strue:

0
下载
关闭预览

相关内容

一份简单《图神经网络》教程,28页ppt
专知会员服务
125+阅读 · 2020年8月2日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
【推荐】用TensorFlow实现LSTM社交对话股市情感分析
机器学习研究会
11+阅读 · 2018年1月14日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年8月26日
Arxiv
0+阅读 · 2021年8月24日
Real-Time High-Resolution Background Matting
Arxiv
4+阅读 · 2020年12月14日
Neural Speech Synthesis with Transformer Network
Arxiv
5+阅读 · 2019年1月30日
VIP会员
相关资讯
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
【推荐】用TensorFlow实现LSTM社交对话股市情感分析
机器学习研究会
11+阅读 · 2018年1月14日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员