Generating diverse and comprehensive interacting agents to evaluate the decision-making modules of autonomous vehicles~(AV) is essential for safe and robust planning. Due to efficiency and safety concerns, most researchers choose to train adversary agents in simulators and generate test cases to interact with evaluated AVs. However, most existing methods fail to provide both natural and critical interaction behaviors in various traffic scenarios. To tackle this problem, we propose a styled generative model RouteGAN that generates diverse interactions by controlling the vehicles separately with desired styles. By altering its style coefficients, the model can generate trajectories with different safety levels serve as an online planner. Experiments show that our model can generate diverse interactions in various scenarios. We evaluate different planners with our model by testing their collision rate in interaction with RouteGAN planners of multiple critical levels.
翻译:由于效率和安全考虑,大多数研究人员选择在模拟器中训练敌机,并生成测试案例,以便与经过评估的反车辆地雷互动。然而,大多数现有方法未能在各种交通情况中提供自然和关键的相互作用行为。为了解决这一问题,我们提议采用典型的基因化模型路由GAN,通过以理想的风格分别控制车辆,产生不同的相互作用。通过改变其风格系数,该模型可以产生具有不同安全等级的轨迹,作为在线规划师。实验表明,我们的模型可以在各种情景中产生多种互动。我们通过与多关键级别的路标GAN规划者互动,测试不同模型与模型的碰撞率,从而评估与模型的碰撞率。