Many robotic applications that are critical for robot performance require immediate feedback, hence execution time is a critical concern. Furthermore, it is common that robots come with a fixed quantity of hardware resources; if an application requires more computational resources than the robot can accommodate, its onboard execution might be extended to a degree that degrades the robot performance. Cloud computing, on the other hand, features on-demand computational resources; by enabling robots to leverage those resources, application execution time can be reduced. The key to enabling robot use of cloud computing is designing an efficient offloading algorithm that makes optimum use of the robot onboard capabilities and also forms a quick consensus on when to offload without any prior knowledge or information about the application. In this paper, we propose a predictive algorithm to anticipate the time needed to execute an application for a given application data input size with the help of a small number of previous observations. To validate the algorithm, we train it on the previous N observations, which include independent (input data size) and dependent (execution time) variables. To understand how algorithm performance varies in terms of prediction accuracy and error, we tested various N values using linear regression and a mobile robot path planning application. From our experiments and analysis, we determined the algorithm to have acceptable error and prediction accuracy when N>40.
翻译:对机器人性能至关重要的许多机器人应用需要即时反馈,因此执行时间是一个关键问题。此外,机器人通常需要固定数量的硬件资源;如果一个应用需要比机器人所能容纳的更多的计算资源,则其机载执行可能扩展到可以降低机器人性能的程度。另一方面,云计算是按需计算的计算资源;通过使机器人能够利用这些资源,应用执行时间可以缩短。使机器人能够使用云计算的关键是设计一种高效的卸载算法,使机载机器人的能力得到最佳利用,并形成关于何时卸载的快速共识,而不事先对应用程序有任何了解或信息。在本文中,我们提出一种预测算法,以预测执行应用特定数据输入大小所需的时间,同时借助少量先前的观察。为了验证算法,我们用以前的N观测法培训它,其中包括独立(投入数据大小)和依赖(执行时间)变量。为了理解算法性业绩如何在预测准确性和错误方面有所差异,我们用直线式回归和移动路径分析来测试各种N值,我们从线性回归和移动路径分析,我们用可接受的逻辑来测定。