The expected goal provides a more representative measure of the team and player performance which also suit the low-scoring nature of football instead of score in modern football. The score of a match involves randomness and often may not represent the performance of the teams and players, therefore it has been popular to use the alternative statistics in recent years such as shots on target, ball possessions, and drills. To measure the probability of a shot being a goal by the expected goal, several features are used to train an expected goal model which is based on the event and tracking football data. The selection of these features, the size and date of the data, and the model which are used as the parameters that may affect the performance of the model. Using black-box machine learning models for increasing the predictive performance of the model decreases its interpretability that causes the loss of information that can be gathered from the model. This paper proposes an accurate expected goal model trained consisting of 315,430 shots from seven seasons between 2014-15 and 2020-21 of the top-five European football leagues. Moreover, this model is explained by using explainable artificial intelligence tool to obtain an explainable expected goal model for evaluating a team or player performance. To the best of our knowledge, this is the first paper that demonstrates a practical application of an explainable artificial intelligence tool aggregated profiles to explain a group of observations on an accurate expected goal model for monitoring the team and player performance. Moreover, these methods can be generalized to other sports branches.


翻译:预定目标提供了更具有代表性的球队和球员业绩衡量标准,这种衡量标准也符合足球的低分率性质,而不是现代足球的得分标准。比赛的分数涉及随机性,往往可能不代表球队和球员的成绩,因此,近年来使用替代统计数据,如目标射击、球占有和操练等,很受欢迎,因此近年来使用替代统计数据,如靶子射击、球占有和操练,使用目标射击的概率是预期目标的概率。为了衡量射击的概率,使用了几个特点来培训一个以赛事和跟踪足球数据为基础的预期目标模型。选择这些特点、数据的规模和日期以及用作可能影响模型的参数的模型。使用黑盒机器学习模型来提高模型的预测性能,因此使用黑盒机器学习模型来降低其可解释性,从而导致损失可以从模型中收集的信息。本文提出了一个准确的预期目标模型,由2014-15至2020-2020-21年七季欧洲足球联盟的模型的315,430发。此外,这一模型的解释是使用可解释的人工智能工具来获得可解释的、可解释的预期目标模型,作为影响模型的参数的参数的参数的参数,以及用作模型的参数的参数的参数,用以评估团队或机队或机组的模型的模型的模型,用来解释,用来解释,用来解释,用于评估团队或机队或机队的模型的模型的预期性能判读的精确性观测队或机队的精确度,解释。一个实验队的精确度的模型的模型,解释。要解释。要解释。要解释我们队或机队的精确度的模型,用来解释,用来解释,用来解释一个实验性能的精确度,用来解释一个实验的模型的模型,用来解释,用来解释,用来解释,用来解释,用来解释,用来解释一个实验队或机组或机组的模型的模型的模型,用来解释,用来解释,用来解释,用来解释,用来解释,用来解释,用来解释,用来解释,用来解释,用来解释,用来解释,用来解释,用来解释,用来解释,用来解释,用来解释一个实验体学的精确的精确的模型,一个实验体或机组或机组的模型的精确学系的精确学系,用来解释,用来解释一个实验体学系,用来解释, 的精确的

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
23+阅读 · 2021年10月11日
Arxiv
14+阅读 · 2020年12月17日
Directions for Explainable Knowledge-Enabled Systems
Arxiv
26+阅读 · 2020年3月17日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员