Multi-Unmanned Aerial Vehicle (UAV) Networks is a promising solution to providing wireless coverage to ground users in challenging rural areas (such as Internet of Things (IoT) devices in farmlands), where the traditional cellular networks are sparse or unavailable. A key challenge in such networks is the 3D placement of all UAV base stations such that the formed Multi-UAV Network (i) utilizes a minimum number of UAVs while ensuring -- (ii) backhaul connectivity directly (or via other UAVs) to the nearby terrestrial base station, and (iii) wireless coverage to all ground users in the area of operation. This joint Backhaul-and-coverage-aware Drone Deployment (BoaRD) problem is largely unaddressed in the literature, and, thus, is the focus of the paper. We first formulate the BoaRD problem as Integer Linear Programming (ILP). However, the problem is NP-hard, and therefore, we propose a low complexity algorithm with a provable performance guarantee to solve the problem efficiently. Our simulation study shows that the Proposed algorithm performs very close to that of the Optimal algorithm (solved using ILP solver) for smaller scenarios, where the area size and the number of users are relatively small. For larger scenarios, where the area size and the number of users are relatively large, the proposed algorithm greatly outperforms the baseline approaches -- backhaul-aware greedy and random algorithm, respectively by up to 17% and 95% in utilizing fewer UAVs while ensuring 100% ground user coverage and backhaul connectivity for all deployed UAVs across all considered simulation setting.


翻译:多无人驾驶航空飞行器(UAV)网络是向具有挑战性的农村地区的地面用户提供无线覆盖(例如,在农地的Things互联网(IOT)设备)的一个很有希望的解决办法,传统的蜂窝网络是稀少或没有的。这种网络中的一个关键挑战是所有UAV基地站的3D位置,例如,已经建立的多无人驾驶航空飞行器网络(i)使用最低数量的UAV,同时确保 -- (ii) 将UAV直接(或通过其他UAV)直接连接到附近的地面基地站,(iii) 向行动地区的所有地面用户提供无线覆盖。这个联合的Backhaul-over-Soverage-aware Drone部署(BoARD)问题基本上在文献中解决了,因此是文件的焦点。我们首先将BoARD问题编成Integer Linear 程序(ILP),但问题是硬的,因此,我们建议采用一个低精密的算算法,用一个可辨识的反向后算法保证解决问题。我们的模拟研究显示,拟议算算算算算法非常小,在最大范围的区域里的OP-ial-lag-laxal 范围内,使用相对的用户区域,而其大小的大小的大小的数值是大小的用户数。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
120+阅读 · 2022年4月21日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
66+阅读 · 2022年4月13日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员