In more and more application areas, we are witnessing the emergence of complex workflows that combine computing, analytics and learning. They often require a hybrid execution infrastructure with IoT devices interconnected to cloud/HPC systems (aka Computing Continuum). Such workflows are subject to complex constraints and requirements in terms of performance, resource usage, energy consumption and financial costs. This makes it challenging to optimize their configuration and deployment. We propose a methodology to support the optimization of real-life applications on the Edge-to-Cloud Continuum. We implement it as an extension of E2Clab, a previously proposed framework supporting the complete experimental cycle across the Edge-to-Cloud Continuum. Our approach relies on a rigorous analysis of possible configurations in a controlled testbed environment to understand their behaviour and related performance trade-offs. We illustrate our methodology by optimizing Pl@ntNet, a world-wide plant identification application. Our methodology can be generalized to other applications in the Edge-to-Cloud Continuum.
翻译:在越来越多的应用领域,我们目睹了将计算、分析和学习结合起来的复杂工作流程的出现,这些工作流程往往需要一个混合执行基础设施,包括连接云层/氢氟碳化物系统的IoT装置(又称Economic Continuum),这些工作流程在性能、资源使用、能源消耗和财政成本方面受到复杂的限制和要求,因此很难优化其配置和部署。我们提议了一种方法,支持优化对地对地环球的实时应用。我们实施E2Clab是E2Clab的延伸。E2Clab是以前提出的一个框架,支持全环环环环环环的试验周期。我们的方法依赖于对受控试样环境中的可能配置进行严格分析,以了解其行为和相关性能权衡。我们通过优化Pl@ntNet这一世界范围的植物识别应用程序来说明我们的方法。我们的方法可以推广到Edge-cloud Contuum的其他应用。