Gliomas are aggressive brain tumors that require accurate imaging-based diagnosis, with segmentation playing a critical role in evaluating morphology and treatment decisions. Manual delineation of gliomas is time-consuming and prone to variability, motivating the use of deep learning to improve consistency and alleviate clinical workload. However, existing methods often fail to fully exploit the information available in multi-parametric MRI (mp-MRI), particularly inter-slice contextual features, and typically require considerable computational resources while lacking robustness across tumor type variations. We present GBT-SAM, a parameter-efficient deep learning framework that adapts the Segment Anything Model (SAM), a large-scale vision model, to volumetric mp-MRI data. GBT-SAM reduces input complexity by selecting fewer than 2.6\% of slices per scan while incorporating all four MRI modalities, preserving essential tumor-related information with minimal cost. Furthermore, our model is trained by a two-step fine-tuning strategy that incorporates a depth-aware module to capture inter-slice correlations and lightweight adaptation layers, resulting in just 6.5M trainable parameters, which is the lowest among SAM-based approaches. GBT-SAM achieves a Dice Score of 93.54 on the BraTS Adult Glioma dataset and demonstrates robust performance on Meningioma, Pediatric Glioma, and Sub-Saharan Glioma datasets. These results highlight GBT-SAM's potential as a computationally efficient and domain-robust framework for brain tumor segmentation using mp-MRI. Our code and models are available at https://github.com/vpulab/med-sam-brain .
翻译:胶质瘤是一种侵袭性脑肿瘤,需要基于影像的精准诊断,其中分割在评估形态学和制定治疗决策中起着关键作用。手动勾画胶质瘤耗时且易受主观差异影响,这促使人们利用深度学习来提高一致性和减轻临床工作负担。然而,现有方法往往未能充分利用多参数磁共振成像(mp-MRI)中的可用信息,特别是层间上下文特征,通常需要大量计算资源,且在肿瘤类型变化时缺乏鲁棒性。我们提出了GBT-SAM,一种参数高效的深度学习框架,该框架将大规模视觉模型Segment Anything Model(SAM)适配于三维mp-MRI数据。GBT-SAM通过选择每次扫描中少于2.6%的切片来降低输入复杂度,同时整合全部四种MRI模态,以最小成本保留关键的肿瘤相关信息。此外,我们的模型采用两步微调策略进行训练,其中包含一个深度感知模块以捕获层间相关性以及轻量级适配层,最终仅需6.5M可训练参数,这是基于SAM的方法中最低的。GBT-SAM在BraTS成人胶质瘤数据集上取得了93.54的Dice分数,并在脑膜瘤、儿童胶质瘤和撒哈拉以南胶质瘤数据集上表现出稳健的性能。这些结果突显了GBT-SAM作为一种计算高效且领域鲁棒的框架,用于基于mp-MRI的脑肿瘤分割的潜力。我们的代码和模型可在https://github.com/vpulab/med-sam-brain获取。