A traditional approach to realize self-adaptation in software engineering (SE) is by means of feedback loops. The goals of the system can be specified as formal properties that are verified against models of the system. On the other hand, control theory (CT) provides a well-established foundation for designing feedback loop systems and providing guarantees for essential properties, such as stability, settling time, and steady state error. Currently, it is an open question whether and how traditional SE approaches to self-adaptation consider properties from CT. Answering this question is challenging given the principle differences in representing properties in both fields. In this paper, we take a first step to answer this question. We follow a bottom up approach where we specify a control design (in Simulink) for a case inspired by Scuderia Ferrari (F1) and provide evidence for stability and safety. The design is then transferred into code (in C) that is further optimized. Next, we define properties that enable verifying whether the control properties still hold at code level. Then, we consolidate the solution by mapping the properties in both worlds using specification patterns as common language and we verify the correctness of this mapping. The mapping offers a reusable artifact to solve similar problems. Finally, we outline opportunities for future work, particularly to refine and extend the mapping and investigate how it can improve the engineering of self-adaptive systems for both SE and CT engineers.


翻译:在软件工程中实现自我适应的传统方法(SE)是通过反馈回路实现软件工程(SE)的自我适应的传统方法(SE)的。这个系统的目标可以作为正式的属性,根据系统的模型加以核查。另一方面,控制理论(CT)为设计反馈环环系统提供了牢固的基础,并为基本属性提供了保障,如稳定性、沉淀时间和稳态错误。目前,这是一个未决问题,是否以及如何通过传统的SE自适应方法来考虑CT的属性。回答这个问题具有挑战性,因为两个领域在代表属性方面存在着原则差异。在本文件中,我们迈出第一步来回答这个问题。我们遵循了一种自下而上的方法,即我们为Scuderia Ferra(F1)所启发的案件指定了控制设计(在Simmlink),为稳定和安全提供了证据。然后,设计被转移到代码(C),这是进一步优化的。我们定义了能够核实控制属性是否仍然维持在代码级的属性的属性。随后,我们通过使用共同语言对两个世界的属性进行测绘来巩固解决方案。我们验证了这一方法的正确性,我们核查了这一绘图的准确性,我们最后可以改进工作,从而改进了自己的工程规划工作,从而改进了我们又如何改进了工作。最后改进了工作,改进了工程工作,改进了工作,改进了。我们改进了工作,改进了工作,改进了工作,改进了方向,改进了工作,改进了工作,改进了工作,改进了。最后又改进了。

0
下载
关闭预览

相关内容

《工程》是中国工程院(CAE)于2015年推出的国际开放存取期刊。其目的是提供一个高水平的平台,传播和分享工程研发的前沿进展、当前主要研究成果和关键成果;报告工程科学的进展,讨论工程发展的热点、兴趣领域、挑战和前景,在工程中考虑人与环境的福祉和伦理道德,鼓励具有深远经济和社会意义的工程突破和创新,使之达到国际先进水平,成为新的生产力,从而改变世界,造福人类,创造新的未来。 期刊链接:https://www.sciencedirect.com/journal/engineering
数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
41+阅读 · 2020年7月27日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
计算机 | 中低难度国际会议信息6条
Call4Papers
7+阅读 · 2019年5月16日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
人工智能 | 中低难度国际会议信息6条
Call4Papers
3+阅读 · 2019年4月3日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年10月12日
Arxiv
6+阅读 · 2021年6月24日
The Measure of Intelligence
Arxiv
6+阅读 · 2019年11月5日
VIP会员
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
计算机 | 中低难度国际会议信息6条
Call4Papers
7+阅读 · 2019年5月16日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
人工智能 | 中低难度国际会议信息6条
Call4Papers
3+阅读 · 2019年4月3日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员