Spiral Galaxies is a pencil-and-paper puzzle played on a grid of unit squares: given a set of points called centers, the goal is to partition the grid into polyominoes such that each polyomino contains exactly one center and is 180{\deg} rotationally symmetric about its center. We show that this puzzle is NP-complete, ASP-complete, and #P-complete even if (a) all solutions to the puzzle have rectangles for polyominoes; or (b) the polyominoes are required to be rectangles and all solutions to the puzzle have just 1$\times$1, 1$\times$3, and 3$\times$1 rectangles. The proof for the latter variant also implies NP/ASP/#P-completeness of finding a noncrossing perfect matching in distance-2 grid graphs where edges connect vertices of Euclidean distance 2. Moreover, we prove NP-completeness of the design problem of minimizing the number of centers such that there exists a set of galaxies that exactly cover a given shape
翻译:螺旋星系是一个在单位方形网格上播放的铅笔和纸的拼图 : 如果有一组点称为中心, 目标是将网格分割成多极人体, 使每个聚聚聚聚米诺完全包含一个中心, 其中心旋转对称为 180\deg} 。 我们显示, 这个拼图是NP- 完整的, ASP- 完成, #P- 完整, 即使 (a) 拼图的所有解决方案都具有多聚虫族的矩形; 或 (b) 需要多聚虫族作为矩形, 拼图的所有解决方案只有1$\ time 1, 1\\ timets 3, 3$\ times 1, 1, timets actangle。 后一种变异体的证据也意味着 NP/ ASP/ #P- comf- 完全匹配远程二格图中的非交叉匹配性匹配 。 2, 我们证明, 设计问题的NP- 完全性: 最大限度地减少中心点数的设计问题, 这样一组星系中的星系就完全覆盖了一个形状的形状。