Many engineering and scientific applications require high precision arithmetic. IEEE~754-2008 compliant (floating-point) arithmetic is the de facto standard for performing these computations. Recently, posit arithmetic has been proposed as a drop-in replacement for floating-point arithmetic. The posit data representation and arithmetic offer several absolute advantages over the floating-point format and arithmetic including higher dynamic range, better accuracy, and superior performance-area trade-offs. In this paper, we present a consolidated general-purpose processor-based framework to support posit arithmetic empiricism. The end-users of the framework have the liberty to seamlessly experiment with their applications using posit and floating-point arithmetic since the framework is designed for the two number systems to coexist. The framework consists of Melodica and Clarinet. Melodica is a posit arithmetic core that implements parametric fused-multiply-accumulate and, more importantly, supports the quire data type. Clarinet is a Melodica-enabled processor based on the RISC-V ISA. To the best of our knowledge, this is the first-ever integration of quire to a RISC-V core. To show the effectiveness of the Clarinet platform, we perform an extensive application study and benchmarking on some of the common linear algebra and computer vision kernels. We perform ASIC synthesis of Clarinet and Melodica on a 90~nm-CMOS Faraday process. Finally, based on our analysis and synthesis results, we define a quality metric for the different instances of Clarinet that gives us initial recommendations on the goodness of the instances. Clarinet-Melodica is an easy-to-experiment platform that will be made available in open-source for posit arithmetic empiricism.


翻译:许多工程和科学应用都需要高精度算术。 IEEE~ 754- 2008 符合( 浮点点) 的算术是进行这些计算的实际标准。 最近, 提出了假设算术作为浮动点算术的递进替换。 假设数据表示和算术为浮点格式和算术提供了若干绝对的优势, 包括更高的动态范围、 更好的准确度和高级性能交易。 在本文件中, 我们提出了一个基于通用处理器的整合框架, 以支持算算术评价。 框架的终端用户可以自由地使用正值和浮点算术进行无缝实验, 因为框架是为两个数字系统设计要共存的系统设计的。 框架由Melodica 和 Clarinet 构成。 Melodica 是一个假设算法核心, 用来执行集成的集成集成的集成- 多倍累积, 更重要的是, 支持数据类型。 Clarinet是基于 RISC- V ISA 的开放- 启动进程。 我们最了解的是, 这是首次整合的IMISC 数据质量分析, 向一个核心 进行我们 的模型的常规分析。

0
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
10+阅读 · 2019年1月29日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关VIP内容
相关资讯
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
10+阅读 · 2019年1月29日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员