This paper describes a system developed to help University students get more from their online lectures, tutorials, laboratory and other live sessions. We do this by logging their attention levels on their laptops during live Zoom sessions and providing them with personalised video summaries of those live sessions. Using facial attention analysis software we create personalised video summaries composed of just the parts where a student's attention was below some threshold. We can also factor in other criteria into video summary generation such as parts where the student was not paying attention while others in the class were, and parts of the video that other students have replayed extensively which a given student has not. Attention and usage based video summaries of live classes are a form of personalised content, they are educational video segments recommended to highlight important parts of live sessions, useful in both topic understanding and in exam preparation. The system also allows a Professor to review the aggregated attention levels of those in a class who attended a live session and logged their attention levels. This allows her to see which parts of the live activity students were paying most, and least, attention to. The Help-Me-Watch system is deployed and in use at our University in a way that protects student's personal data, operating in a GDPR-compliant way.


翻译:本文描述了一个为帮助大学生从在线讲座、辅导、实验室和其他现场课程中获得更多关注而开发的系统。我们这样做的方法是在现场直播课时记录他们对膝上型电脑的注意程度,并向他们提供这些现场课的个人化视频摘要。我们使用面部关注分析软件,制作个人化视频摘要,其中仅包含学生关注程度低于某种临界值的部分。我们还可以将其他标准纳入视频摘要制作中,例如学生不关注而其他班级学生不关注的部分,以及其他学生广泛重播的部分视频。基于现场课的注意和使用视频摘要是个人化内容的一种形式,它们是建议突出现场课重要部分的教育视频部分,对专题理解和考试准备都有用。该系统还允许教授审查参加现场会议并记录其关注程度的班级学生的总体关注程度。这样她就能看到现场活动的学生对哪些部分给予最多、最少的关注。“帮助-M-观察”系统是在我们的大学安装和使用一种保护学生个人数据的方式,从而保护学生的GDP数据。

0
下载
关闭预览

相关内容

Attention机制最早是在视觉图像领域提出来的,但是真正火起来应该算是google mind团队的这篇论文《Recurrent Models of Visual Attention》[14],他们在RNN模型上使用了attention机制来进行图像分类。随后,Bahdanau等人在论文《Neural Machine Translation by Jointly Learning to Align and Translate》 [1]中,使用类似attention的机制在机器翻译任务上将翻译和对齐同时进行,他们的工作算是是第一个提出attention机制应用到NLP领域中。接着类似的基于attention机制的RNN模型扩展开始应用到各种NLP任务中。最近,如何在CNN中使用attention机制也成为了大家的研究热点。下图表示了attention研究进展的大概趋势。
专知会员服务
124+阅读 · 2020年9月8日
专知会员服务
40+阅读 · 2020年9月6日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
109+阅读 · 2020年6月10日
【论文推荐】小样本视频合成,Few-shot Video-to-Video Synthesis
专知会员服务
24+阅读 · 2019年12月15日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
学术报告|港科大助理教授宋阳秋博士
科技创新与创业
7+阅读 · 2019年7月19日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Python机器学习教程资料/代码
机器学习研究会
8+阅读 · 2018年2月22日
人工智能 | 国际会议截稿信息5条
Call4Papers
6+阅读 · 2017年11月22日
【数据集】新的YELP数据集官方下载
机器学习研究会
16+阅读 · 2017年8月31日
Arxiv
0+阅读 · 2021年3月9日
An Attentive Survey of Attention Models
Arxiv
44+阅读 · 2020年12月15日
Arxiv
10+阅读 · 2020年4月5日
Arxiv
6+阅读 · 2019年7月29日
VIP会员
相关资讯
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
学术报告|港科大助理教授宋阳秋博士
科技创新与创业
7+阅读 · 2019年7月19日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Python机器学习教程资料/代码
机器学习研究会
8+阅读 · 2018年2月22日
人工智能 | 国际会议截稿信息5条
Call4Papers
6+阅读 · 2017年11月22日
【数据集】新的YELP数据集官方下载
机器学习研究会
16+阅读 · 2017年8月31日
Top
微信扫码咨询专知VIP会员