Recently, deep learning (DL) methods such as convolutional neural networks (CNNs) have gained prominence in the area of image denoising. This is owing to their proven ability to surpass state-of-the-art classical image denoising algorithms such as BM3D. Deep denoising CNNs (DnCNNs) use many feedforward convolution layers with added regularization methods of batch normalization and residual learning to improve denoising performance significantly. However, this comes at the expense of a huge number of trainable parameters. In this paper, we address this issue by reducing the number of parameters while achieving a comparable level of performance. We derive motivation from the improved performance obtained by training networks using the dense-sparse-dense (DSD) training approach. We extend this training approach to a reduced DnCNN (RDnCNN) network resulting in a faster denoising network with significantly reduced parameters and comparable performance to the DnCNN.


翻译:最近,深刻的学习(DL)方法,如进化神经网络(CNNs),在图像分解领域越来越突出,这是因为这些方法已证明有能力超过最先进的古典图像分解算法,如BM3D。深淡CNN(DnCNNs)使用许多分批正常化和剩余学习的分解调控方法,使分批标准化和剩余学习的分解化方法增多,从而显著改善分解性能。然而,这牺牲了大量可训练参数。在本文件中,我们通过减少参数数量,同时实现类似水平的性能来解决这一问题。我们从培训网络使用密集的分解(DSD)培训方法获得的改进业绩中获取动力。我们将这一培训方法推广到减少的DNNN(RDNNNN)网络,从而加快了分解网络,参数大大降低,与DNNN的类似性能。

1
下载
关闭预览

相关内容

专知会员服务
42+阅读 · 2021年8月30日
专知会员服务
78+阅读 · 2020年8月4日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【CNN】一文读懂卷积神经网络CNN
产业智能官
18+阅读 · 2018年1月2日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Arxiv
5+阅读 · 2018年10月11日
Few Shot Learning with Simplex
Arxiv
5+阅读 · 2018年7月27日
W-net: Bridged U-net for 2D Medical Image Segmentation
Arxiv
19+阅读 · 2018年7月12日
Arxiv
3+阅读 · 2017年10月1日
VIP会员
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【CNN】一文读懂卷积神经网络CNN
产业智能官
18+阅读 · 2018年1月2日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Top
微信扫码咨询专知VIP会员