In this paper, we presented a data-driven framework to optimize the out-of-plane stiffness for soft grippers to achieve mechanical properties as hard-to-twist and easy-to-bend. The effectiveness of this method is demonstrated in the design of a soft pneumatic bending actuator (SPBA). First, a new objective function is defined to quantitatively evaluate the out-of-plane stiffness as well as the bending performance. Then, sensitivity analysis is conducted on the parametric model of an SPBA design to determine the optimized design parameters with the help of Finite Element Analysis (FEA). To enable the computation of numerical optimization, a data-driven approach is employed to learn a cost function that directly represents the out-of-plane stiffness as a differentiable function of the design variables. A gradient-based method is used to maximize the out-of-plane stiffness of the SPBA while ensuring specific bending performance. The effectiveness of our method has been demonstrated in physical experiments taken on 3D-printed grippers.
翻译:在本文中,我们提出了一个数据驱动框架,优化软握手机外的僵硬度,以取得机械性能,作为硬盘和易盘的硬盘。这一方法的效力表现在软气压弯曲驱动器的设计中。首先,确定了一个新的目标功能,以定量评价飞机外的硬度和弯曲性能。然后,对SPBA设计参数模型进行了敏感度分析,以便在Finite元素分析(FEA)的帮助下确定优化的设计参数。为了能够计算数字优化,采用了数据驱动方法学习成本功能,直接代表机外的僵硬度,作为设计变量的不同功能。采用了梯度法,以尽量扩大SPBA的板外僵硬性,同时确保具体的弯曲性能。我们的方法的有效性已在3D打印的握手进行的实际实验中得到了证明。