This paper presents an integrated navigation framework for Autonomous Mobile Robots (AMRs) that unifies environment representation, trajectory generation, and Model Predictive Control (MPC). The proposed approach incorporates a quadtree-based method to generate structured, axis-aligned collision-free regions from occupancy maps. These regions serve as both a basis for developing safe corridors and as linear constraints within the MPC formulation, enabling efficient and reliable navigation without requiring direct obstacle encoding. The complete pipeline combines safe-area extraction, connectivity graph construction, trajectory generation, and B-spline smoothing into one coherent system. Experimental results demonstrate consistent success and superior performance compared to baseline approaches across complex environments.


翻译:本文提出了一种用于自主移动机器人的集成导航框架,该框架将环境表示、轨迹生成与模型预测控制统一起来。所提出的方法采用基于四叉树的方法,从占据地图中生成结构化的、轴对齐的无碰撞区域。这些区域既作为构建安全走廊的基础,也作为MPC公式中的线性约束,从而无需直接编码障碍物即可实现高效可靠的导航。完整的流程将安全区域提取、连通图构建、轨迹生成与B样条平滑整合为一个连贯的系统。实验结果表明,在复杂环境中,该方法相比基线方法具有持续的成功率和更优的性能。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
A Multi-Objective Deep Reinforcement Learning Framework
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员