We propose a method for obtaining maximum likelihood estimates (MLEs) of a Markov-Modulated Jump-Diffusion Model (MMJDM) when the data is a discrete time sample of the diffusion process, the jumps follow a Laplace distribution, and the parameters of the diffusion are controlled by a Markov Jump Process (MJP). The data can be viewed as incomplete observation of a model with a tractable likelihood function. Therefore we use the EM-algorithm to obtain MLEs of the parameters. We validate our method with simulated data. The motivation for obtaining estimates of this model is that stock prices have distinct drift and volatility at distinct periods of time. The assumption is that these phases are modulated by macroeconomic environments whose changes are given by discontinuities or jumps in prices. This model improves on the stock prices representation of classical models such as the model of Black and Scholes or Merton's Jump-Diffusion Model (JDM). We fit the model to the stock prices of Amazon and Netflix during a 15-years period and use our method to estimate the MLEs.
翻译:当数据是扩散过程的离散时间样本时,我们建议一种获取Markov-moded 跳跃扩散模型(MMJDM)最大可能性估计的方法(MLE),跳跃是在拉普尔分布之后,扩散参数由Markov 跳跃过程(MJP)控制。这些数据可以被视为对具有可移动可能性功能的模型的不完整观测。因此,我们使用EM-algorithm来获取参数的MLE。我们用模拟数据验证了我们的方法。获得这一模型估计的动机是,股票价格在不同的时间段里有明显的漂移和波动。假设是,这些阶段是由宏观经济环境调节的,这些环境的变化是由不连续或价格暴涨造成的。这个模型改进了古典模型的股票价格表现,如黑人和Sholes模型或Merton的跳跃变模型。我们用模拟数据来验证我们的方法。我们在15年期间将模型与亚马逊和Netflix的股票价格相匹配,并使用我们的方法来估计MLEGs。