This paper addressed the problem of structured sentiment analysis using a bi-affine semantic dependency parser, large pre-trained language models, and publicly available translation models. For the monolingual setup, we considered: (i) training on a single treebank, and (ii) relaxing the setup by training on treebanks coming from different languages that can be adequately processed by cross-lingual language models. For the zero-shot setup and a given target treebank, we relied on: (i) a word-level translation of available treebanks in other languages to get noisy, unlikely-grammatical, but annotated data (we release as much of it as licenses allow), and (ii) merging those translated treebanks to obtain training data. In the post-evaluation phase, we also trained cross-lingual models that simply merged all the English treebanks and did not use word-level translations, and yet obtained better results. According to the official results, we ranked 8th and 9th in the monolingual and cross-lingual setups.


翻译:本文用双视语义依赖分析器、大型预先培训的语言模型和公开的翻译模型探讨了结构化情感分析问题。对于单一语言结构,我们考虑了:(一) 单树库培训,和(二) 通过培训放松对来自不同语言的树库的设置,这些树库可以通过跨语言模式适当处理。对于零点设置和特定目标树库,我们依赖:(一) 用其他语言对现有树库进行字级翻译,以获得吵闹、不可能的语法学数据,但附带说明的数据(我们尽可能公布这些数据),以及(二) 合并这些经过翻译的树库,以获得培训数据。在评估后阶段,我们还培训了跨语言模式,这些模式只是将所有英语树库合并在一起,没有使用文字翻译,而且取得了更好的结果。根据官方结果,我们在单一语言和跨语言结构中排行第八位和第九位。

0
下载
关闭预览

相关内容

专知会员服务
26+阅读 · 2021年4月2日
最新《Transformers模型》教程,64页ppt
专知会员服务
312+阅读 · 2020年11月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
AAAI2020 图相关论文集
图与推荐
10+阅读 · 2020年7月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
11+阅读 · 2018年9月28日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
AAAI2020 图相关论文集
图与推荐
10+阅读 · 2020年7月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员