Explainable artificial intelligence techniques are becoming increasingly important with the rise of deep learning applications in various domains. These techniques aim to provide a better understanding of complex "black box" models and enhance user trust while maintaining high learning performance. While many studies have focused on explaining deep learning models in computer vision for image input, video explanations remain relatively unexplored due to the temporal dimension's complexity. In this paper, we present a unified framework for local agnostic explanations in the video domain. Our contributions include: (1) Extending a fine-grained explanation framework tailored for computer vision data, (2) Adapting six existing explanation techniques to work on video data by incorporating temporal information and enabling local explanations, and (3) Conducting an evaluation and comparison of the adapted explanation methods using different models and datasets. We discuss the possibilities and choices involved in the removal-based explanation process for visual data. The adaptation of six explanation methods for video is explained, with comparisons to existing approaches. We evaluate the performance of the methods using automated metrics and user-based evaluation, showing that 3D RISE, 3D LIME, and 3D Kernel SHAP outperform other methods. By decomposing the explanation process into manageable steps, we facilitate the study of each choice's impact and allow for further refinement of explanation methods to suit specific datasets and models.
翻译:暂无翻译