We investigate the Hilbert complex of elasticity involving spaces of symmetric tensor fields. For the involved tensor fields and operators we show closed ranges, Friedrichs/Poincare type estimates, Helmholtz type decompositions, regular decompositions, regular potentials, finite cohomology groups, and, most importantly, new compact embedding results. Our results hold for general bounded strong Lipschitz domains of arbitrary topology and rely on a general functional analysis framework (FA-ToolBox). Moreover, we present a simple technique to prove the compact embeddings based on regular decompositions/potentials and Rellich's section theorem, which can be easily adapted to any Hilbert complex.
翻译:我们调查了Hilbert的弹性综合体,该综合体涉及对称振场的空间。对于所涉及的高频场和操作员,我们展示了封闭范围、Friedris/Poincare类型估计、Helmholtz型分解、定期分解、定期潜力、有限的混合组,以及最重要的是,新的契约嵌入结果。我们的结果对普通的紧凑的Lipschitz型任意地表学领域和依赖一般功能分析框架(FA-ToolBox ) 。此外,我们展示了一种简单的技术,可以证明基于定期分解/潜力和Rellich的理论部分的紧凑嵌入,这些理论可以很容易地适应任何Hilbert综合体。