In this paper we propose a robotic system for Irrigation Water Management (IWM) in a structured robotic greenhouse environment. A commercially available robotic manipulator is equipped with an RGB-D camera and a soil moisture sensor. The two are used to automate the procedure known as "feel and appearance method", which is a way of monitoring soil moisture to determine when to irrigate and how much water to apply. We develop a compliant force control framework that enables the robot to insert the soil moisture sensor in the sensitive plant root zone of the soil, without harming the plant. RGB-D camera is used to roughly estimate the soil surface, in order to plan the soil sampling approach. Used together with the developed adaptive force control algorithm, the camera enables the robot to sample the soil without knowing the exact soil stiffness a priori. Finally, we postulate a deep learning based approach to utilize the camera to visually assess the soil health and moisture content.
翻译:在本文中,我们提议在结构化的机器人温室环境中建立一个灌溉水管理的机器人系统(IWM),商业上可用的机器人操纵器配备了RGB-D照相机和一个土壤湿度传感器,两种程序用来将被称为“感应和外观方法”的程序自动化,这是一种监测土壤水分以确定何时灌溉和应施用多少水的方法。我们开发了一个符合要求的武力控制框架,使机器人能够在不伤害植物的情况下将土壤湿度传感器插入土壤的敏感植物根部区。RGB-D照相机用来大致估计土壤表面,以便规划土壤采样方法。与开发的适应性力量控制算法一起使用,照相机使机器人能够在不了解土壤先前确切的坚固度的情况下对土壤进行采样。最后,我们设想了一种深层次的学习方法,利用照相机对土壤健康和湿度内容进行直观评估。