We consider the cops and robber game variant consisting of one cop and one robber on time-varying graphs (TVG). The considered TVGs are edge periodic graphs, i.e., for each edge, a binary string $s_e$ determines in which time step the edge is present, namely the edge $e$ is present in time step $t$ if and only if the string $s_e$ contains a $1$ at position $t \mod |s_e|$. This periodicity allows for a compact representation of the infinite TVG. We proof that even for very simple underlying graphs, i.e., directed and undirected cycles the problem whether a cop-winning strategy exists is NP-hard and W[1]-hard parameterized by the number of vertices. Our second main result are matching lower bounds for the ratio between the length of the underlying cycle and the least common multiple (LCM) of the lengths of binary strings describing edge-periodicies over which the graph is robber-winning. Our third main result improves the previously known EXPTIME upper bound for Periodic Cop and Robber on general edge periodic graphs to PSPACE-membership.
翻译:我们考虑的是警察和强盗游戏的变体,其中包括一个警察和一个在时间变化图(TVG)上的强盗。 被考虑的TVG是一个边缘周期图,即每个边缘的边缘,一个二进制字符串$_e$e$确定在哪个时间步骤中,即边缘的边缘是美元,如果并且只有在字符串$_e$包含在$t mod $_s_e ⁇ $的位置上的1美元,这个周期允许一个无限TVG的紧凑表示。 我们证明,即使是非常简单的基本图,即定向和非定向的图形,也存在一个问题循环,即是否存在一个警察结识战略的问题是NP硬的和W[1]硬的参数,由圆顶点数组成。 我们的第二个主要结果是将基础周期的长度与描述该图所覆盖的边缘-周期长度的最小值(LCMM)的双边字符串比对准。 我们的第三个主要结果改进了已知的 EXPTIME平面平面的平面平面平面的平面图。