With the outbreak of COVID-19, how to mitigate and suppress its spread is a big issue to the government. Department of public health need powerful models to model and predict the trend and scale of such pandemic. And models that could evaluate the effect of the public policy are also essential to the fight with the COVID-19. A main limitation of existing models is that they can only evaluate the policy by calculating $R_0$ after infection happens instead of giving observable index. To tackle this, based on the transmission character of the COVID-19, we preposed a novel framework Spatial-Temporal-Susceptible-Infected-Removed (STSIR) model. In particular, we merged both intra-city and inter-city mobility index with the traditional SIR dynamics and make it a dynamic system. And we proved that the STSIR system is a closed system which makes the system self-consistent. And finally we proposed a Multi-Stage Simulated Annealing (MSSA) algorithm to find optimal parameter of the system. In our experiments, based on Baidu Mobility dataset, and China pandemic dataset provided by Dingxiangyuan, our model can effectively predict the total scale of the pandemic and also gives clear policy analysis with observable index.
翻译:随着COVID-19的爆发,如何减轻和遏制其传播是政府面临的一个重大问题。公共卫生部需要强大的模型模型来模拟和预测这种流行病的趋势和规模。能够评价公共政策影响的模型对于与COVID-19的战斗也至关重要。现有模型的一个主要局限性是,它们只能在感染发生后通过计算0.00美元而不是提供可观测指数来评估政策。为了解决这个问题,我们根据COVID-19的传播特性,设想了一个全新的框架空间-时可视-感染-逆转(STSIR)模型。特别是,我们把城市内部和城市间流动指数与传统的SIR动态合并起来,使之成为一个动态系统。我们还证明,STSIR系统是一个封闭系统,使系统能够自我协调。最后,我们根据COVID-19的传输特性,提出了一种多系统模拟(MSSA)算法,以找到系统的最佳参数。在我们的实验中,以全面移动数据模型为基础,并将中国的大流行病流动指数指数指数与传统的SIR动态系统合并起来,使之成为一个动态系统。我们证明STSIR系统是一个封闭的系统,使系统能够自我协调。最后,我们提出了一种多系统模拟模拟模拟模拟模拟(MSSAA)来找到最佳的系统参数。在我们的实验中,并且中国的大规模大流行政策中也提供了一个明确的预测。